

Muon Spectrometry at Forward Rapidities in ALICE

EPS-HEP2019, Ghent, July 11th 2019

A. Ferrero

The Present ALICE Muon Spectrometer

The ALICE Muon Spectrometer:

- Muon spectrometer acceptance: 2.5 < η < 4
- Tracking: Cathode Pad Chambers (CPCs)
- Trigger: Resistive Plate Chambers (RPCs)
- Warm dipole: 0.7 T (820 Tons)

Physics with the Upgraded Muon Spectrometer

- Better statistics (one order of magnitude wrt Run 2)
 - ▶ Pb-Pb collected luminosity: 1 nb⁻¹ (Run 2) -> 13 nb⁻¹ (Run 3 and 4)
 - Benefit for rare signals: Ψ (2S), Y,...
- J/Ψ, Ψ(2S)
 - Present Muon Arm: Inclusive J/Ψ measurement
 - New: Separation prompt / non-prompt (B -> J/Ψ + X)
 - New: Improved Ψ (2S) due to the increase of S/B
- Heavy Flavor
 - Present Muon Arm: No charm/beauty separation (large systematics, $p_T > 3$)
 - New: Open charm/beauty in semi-leptonic decays:
 - New: B measurement using non-prompt J/Ψ down to $p_T \sim 0$ GeV/c
- Low mass vector mesons (ρ, ω, φ)
 - Much improved mass resolution
 - ▶ Important increase of S/B

Ψ(2S) Suppression Compared to J/Ψ

Preliminary Run2 results (x3 expected with full stat.)

- 0000 Rev **ALICE Preliminary** Pb-Pb, $\sqrt{s_{NN}}$ = 5.02 TeV, L_{int} = 225 μb^{-1}
- Centrality = 0-20%, p_{\downarrow} <8 GeV/c, 2.5<y<4.0 ট্র14000
- S10000 8000 $\chi 2/ndf = 0.500$
- 6000 4000 2000
- 3.5 M (GeV/c²) ALI-PREL-125556
- ALICE inclusive J/ ψ , ψ (2S), Pb-Pb $\sqrt{s_{NN}}$ = 5.02 TeV, 2.5<y<4, 0< p_{τ} <8 GeV/c1.6 J/Ψ: arXiv:1606.08197
 - $\psi(2S)$ (Preliminary) 1.4 J/ψ (arXiv:1606.08197) 1.2

- Upper limits include global uncertainties
- i +
- 250 300 350 400 50 100 150 200 $\langle N_{\rm part} \rangle$ ALI-PREL-120671

- Difficult analysis
- First preliminary results in Pb-Pb
- Need more statistics and better S/B

Projections with upgraded Muon Spectrometer

8.0

0.6

0.4

0.2

 A_{A}

Heavy Flavor in Pb-Pb at 5.02 TeV

- Strong suppression of heavy-flavor decay leptons
 - ▶ No separation between charm and beauty (beauty dominates from $p_T > \sim 5$ GeV/c)
 - Similar suppression at central (electrons) and forward rapidity (muons)

Heavy Flavor in Pb-Pb @ 5.02 TeV

- Strong suppression of heavy-flavor decay leptons
 - ▶ No separation between charm and beauty (beauty dominates from $p_T > \sim 5$ GeV/c)
 - Similar suppression at central (electrons) and forward rapidity (muons)

A. Ferrero

The Upgraded MUON Spectrometer

ALICE

- After the LS2 $(2019/2020) => 13 \text{ nb}^{-1} \text{ Pb-Pb} (x 10 / \text{Run 2})$
 - ▶ Present LHC luminosity in Pb-Pb: L=10²⁷ cm⁻²s⁻¹ (8 kHz of interaction) => DAQ @ 1 kHz
 - ▶ Upgraded Pb-Pb luminosity: L=6 10²⁷ cm⁻²s⁻¹ => 50 kHz of interaction rate => DAQ @ 100 kHz
- New Muon Forward Tracker (MFT) => improved physics program
- Need to upgrade the FEE & readout of MUON Tracking and Identifier

The Upgraded MUON Spectrometer

ALICE

- After the LS2 $(2019/2020) => 13 \text{ nb}^{-1} \text{ Pb-Pb}$ (x 10 / Run 2)
 - ▶ Present LHC luminosity in Pb-Pb: L=10²⁷ cm⁻²s⁻¹ (8 kHz of interaction) => DAQ @ 1 kHz
 - ▶ Upgraded Pb-Pb luminosity: L=6 10²⁷ cm⁻²s⁻¹ => 50 kHz of interaction rate => **DAQ** @ **100** kHz
- New Muon Forward Tracker (MFT) => improved physics program
- Need to upgrade the FEE & readout of MUON Tracking and Identifier

The Muon Forward Tracker (MFT) В+ MFT

ALICE MFT

- Tracker located in front of the Muon Arm
 - High spatial resolution (~5 μm)
 - Secondary vertex capabilities
- 5 planes of CMOS sensors (ALPIDE)
 - ▶ Technology: Tower Jazz 0.18 microns
 - Pixel size: 29x27 μm²
 - ► Thickness: ~0.7% X/X₀ per plane
 - → ~1000 sensors, ~0.4 m²
 - 460 mm from nominal interaction point

See Y. Morales' talk earlier this morning

ALPIDE Wafer

10 half-disks2 detection planes each

A. Ferrero

EPS-HEP2019

MFT Assembly

ALICE MFT Ladders

ALICE

12

Ladders

- It ensures data, slow control, reverse back bias and power supply from/to the chips
- Al FPC chosen. Produced @ CERN

MFT Integration

ALICE

MFT Barrel

- Insertion & positioning
- Cooling/LV/Readout connections

The Muon Tracking

ALICE

- 10 planes of Cathode Pad Chambers (CPC) arranged in 5 stations
 - Stations 1&2 quadrant type (3 pad segm.)
 - Stations 3, 4, 5 slats type (3 pad segm.)
- CPC
 - Gas mixture Ar/CO₂ 80:20, gap 5 mm (4.2 mm St. 1)
 - ▶ Gain of ~10⁴, HV ~ 1650 V
 - Spatial resolution of ~100 μm and ε ~100%
- 156 detection elements, 1.1 M channels

Only the CPC readout electronics will be upgraded during LS2

MUON Tracking Upgrade

Replacement of the current electronics (FEE, Data bus, Readout)

New: frontend SAMPA chip, new data buses, SOLAR concentrator card, CRU

DualSAMPA Frontend Electronics

- DualSAMPA FEE based on new SAMPA ASICs
 - On-chip zero suppression and continuous readout (up to 1.28 Gbps)
 - ▶ 10 bits, up to 20 Msamples/s ADCs with Charge Sensitive Amplifiers, 32 channels/chip

SOLAR Data Concentrator Board

Data from 80 SAMPA chips collected and transferred via optical uplink

 Based on GBTx chip from CERN **LVPS** WIENER **PL512** Filter box LV 3 busbars 1.2V analog 1.2V digital **FEC** FEC 2.5V **GND GND SOLAR** FE link 80 Mbit/s (Data, Trigger, Config) **3**. **SOLAR** board 700 (Up to 16 channels I2C) 1 FEC = 2 SAMPA FE link: 8x connectors FLEX (slats) /PCB(quadrants) Up to 10 FEC / PCB + flat cable ~3000 **GBTx** FFSD-20 ribbon cable Cavern **VTRx**

Testbeam Results

Validation of the full readout chain

@ SPS in Sept. 2017 / Oct. 2018

20 GeV/c muon beam

Spatial Resolution

Quad1.fClusternbend.fYmat[0]+Quad1.fYextrap-37.658+0.0242574*Quad1.fXextrap {abs(Quad1.fClusternbend.fYmat[0]+Quad1.fYextrap-37.658+0.0242574*Quad1.fXextrap}-0.05}

The Muon Identifier Upgrade

- No hardwired trigger anymore => continuous readout mode
 - ▶ Replacement of the current readout electronics (Regional, Local, J2-bus)
- Slow down the aging of the RPCs after LS2
 - ▶ Solution: Front-end electronics with amplification

MID FEE Upgrade: The FEERIC project

- ☐ Goal: slow down RPC aging after LS2
 - FE with amplification (FEERIC) for RPCs

- □ Factor 4 less charge released in the RPC gas => reduced aging
- □ New wireless threshold distribution
 - Threshold setting per FEERIC card
 - ZIGBEE protocol from master to node

- ☐ Project status
 - Production and installation completed
 - Commissioning from 2nd half of 2019

MID Readout Upgrade

ALICE

- □ Replacement of the 234 Local cards and of the 16 Regional cards presently in operation
- □ Readout electronics for continuous mode
 - Regional card interfaced with CRU via 2 GBTs
- □ Production ongoing

23

Summary and Schedule

Muon Forward Tracker (MFT)

- New detector for displaced vertex reconstruction and improved S/B for di-muon resonances
- Production and assembly:
 first half MFT -> June 2019, second half MFT -> December 2019
- ► Commissioning and installation: Surface -> December 2019, Cavern -> April 2020

Muon Tracking

- ► Electronics production: **DualSAMPA** -> 03/2020, **SOLAR** -> 10/2019
- ▶ Stations 1 & 2 readout replacement: November 2019 to July 2020
- ➤ Stations 3, 4, 5 readout replacement: **August 2019 to June 2020**
- Readout commissioning in parallel with installation

Muon Identifier

- ▶ FEERIC readout and threshold boards already installed, commissioning ongoing
- ▶ Local and regional boards: January 2019 to October 2019

Backup Slides

Common Readout Unit (CRU)

ALICE

- Up to 24 bi-directional front-end links based on the Versatile Link and the GigaBit Transceiver (GBTx) chip
- Common development with LHCb

A. Ferrero

First-level processing: data compression and formatting

EPS-HEP2019, July 11th 2019

26

DualSampa to SOLAR

- Quadrants St.1,2
 - ▶ 6 (St1) or 8 (St2) PCBs per cathode
 - Prototypes already tested
 - St 1: end of prod by Nov.
 - St 2: end of prod by Sept.
- Slats St. 3,4,5
 - 5 DualSampa per flex (hybrid circuit)
 - ▶ Tendering done. Company about to be chosen
 - Pre-series by mid May
 - Prod by end of June

