

The JUNO experiment and its electronics readout system

PLAN:

- Introduction
- The JUNO detector
- The JUNO electronics readout

What is JUNO?

JUNO = Jiangmen Underground Neutrino Observatory

- JUNO is a "medium-baseline" (53km) reactor neutrino experiment located in China, under construction (data taking foreseen in 2021)
- JUNO will be the largest Liquid Scintillator detector ever built (20kt)
- Goals : Measurement of the neutrino mass hierarchy (NMH) and oscillation parameters
 + astroparticle and rare processes

Neutrino Mass Hierarchy

Neutrinos are observed via Inverse Beta Decay (IBD) :

$$\bar{\nu}_e + p \to e^+ + n$$
 $\tau \simeq 200 \mu \text{sec}$
 $n + p \to d + \gamma$

→ Very clean signature

E range: 2 to 8 MeV

Neutrino energy spectrum:

The Pee survival probability in vacuum:

$$P_{ee}(L/E) = 1 - P_{21} - P_{31} - P_{32}$$

$$P_{21} = \cos^4(\theta_{13})\sin^2(2\theta_{12})\sin^2(\Delta_{21})$$

$$P_{31} = \cos^2(\theta_{12})\sin^2(2\theta_{13})\sin^2(\Delta_{31})$$

$$P_{32} = \sin^2(\theta_{12})\sin^2(2\theta_{13})\sin^2(\Delta_{32})$$

$$\Delta_{ij} = 1.27\Delta m_{ij}^2 L/E$$

$$\Delta m_{31}^2 = \Delta m_{32}^2 + \Delta m_{21}^2$$

$$NH: |\Delta m_{31}^2| = |\Delta m_{32}^2| + |\Delta m_{21}^2| \qquad \omega P_{31} > \omega P_{32}$$

$$IH: |\Delta m_{31}^2| = |\Delta m_{32}^2| - |\Delta m_{21}^2| \qquad \omega P_{31} < \omega P_{32}$$

Key issues:

- Energy resolution and scale
- Statistics

JUNO Collaboration and timescale

The JUNO detector

Detector performance goals:

KAMLAND

JUNO

Energy Resolution	6% @ 1MeV	3% @ 1MeV
LS mass	~1 kt	20 kt
LS Attenuation/Diameter	15m / 16m	>20m / 35m
Photocathode Coverage	32%	75%
QE x CE	25% x 60%	40% x 60%
Photon collection	250 p.e./MeV	1200 p.e./MeV

Detector main components

Calibration

4-complementary Calibration systems

Muon veto:

Top Tracker

Water Cherenkov Veto 20kt ultrapure water and 2000 20" PMTs

Electronics

Central detector:

Acrylic sphere (35.4 m diameter)

Filled with 20kt LAB LS

18000 20" PMTs and 25600 3" PMTs

Stainless steel

Detector main components

Central detector :

CDR http://arxiv.org/abs/1508.07166

Acrylic sphere and stainless steel truss Liquid Scintillator (LS) large volume

 \rightarrow for the statistics

Double calorimetry:

- \rightarrow 18000 large PMTs (20") \rightarrow 75%
- \rightarrow 25600 small PMTs (3") \rightarrow 2.5%

High light coverage (78%) and double calorimetry system

→ for the energy resolution

and bg contamination with the central detector

PMT

20" PM⁻

JUNO electronics specifications

What we need:

- Excellent energy resolution, especially at low energy (for NMH)
- Excellent photons arrival time measurement (for good vertexing)
- A large dynamic range (for atm-, geo-, and supernova neutrinos)
- A negligible deadtime (for supernova events lasting up to few seconds)

Specifiations:

- Provide full waveform digitization with high speed (1 Gsample/s), high resolution (12 bits) ADC
- Measure photon pulses with high resolution (full dynamic range: 1-4000 pe)

Main concern:

Reliability of Under Water (UW) electronics (not accessible after installation)

→ goal : less than 1% PMT + underwater electronics failure over 6 years (calculation + laboratory reliability/aging tests + redundancy)

Readout of the 20" PMTs

Global Control Unit (GCU)

ADU (Analog to Digital Unit)

PMT current signal is conditioned, duplicated in two streams and converted to voltage (low-gain and high-gain TIAs):

- Low gain (8:1) 0-1000 pe
- High Gain (1:1) 1-128 pe
 Each stream is digitized with a 12-bit
 1 Gsample/s custom designed ADC

Digital signal is then processed in **FPGA** (Xilink kintex7): reconstructed (timestamp, charge) and the digitized waveform is stored locally (2 GB **DDR** RAM)
All GCU (about 6000) synchronised < 16 ns window

- in 'Global-Trigger' running mode, a local TRG signal is sent to the Global Trigger and, if validated, data are transferred to DAQ through Ethernet
- in 'Auto-Trigger' mode, fixed window waveform (300 ns) are sent to the DAQ every time a local trigger is issued

Outside water electronics

Up to 80 meter CAT5 cables:

Asynchronous Link: variable latency ethernet link
 Data readout and slow control

Protocol: IPBUS - Nominal link speed: 1Gbps

Synchronous link: fixed latency link
 Timing Trigger and Control (TTC) protocol

TTIM (Trigger/Timing interface mezzanine)

BEC (Backend Card)

Receive 48 Ethernet cables from the underwater boxes

Distributes CLK signal to GCUs
Transfers TRG signal between Global Trigger and
GCUs

Global trigger scheme

- Design completed for most of the components
- Validation and integration tests are being carried on

Readout of the small PMTs

ABC front-end card with CATIROC ASIC

Conclusions

- JUNO is an unprecedented liquid scintillator detector (size & resolution)
- Required to reach 3% energy resolution at 1MeV
- The design of the electronics is almost completed, all the different components have been validated and a full integration test is being performed
- Production of the individual parts will follow

Combined test in Padova →

GCU

OTHER JUNO TALKS/ POSTERS at EPSHEP2019

See Talks:

- JUNO potential for neutrino oscillation physics, Marco Grassi, Neutrino session
- Atmospheric neutrino spectrum reconstruction with JUNO, Giulio Settanta, Astroparticle session

See Posters:

- Detection of supernova neutrinos with JUNO, Mario Buscemi
- Reactor Neutrino Spectrum Uncertainty and Mass Hierarchy Determination, Emilio Ciuffoli
- Current status of JUNO Top Tracker, Qinhua Huang
- Study on HQ-LAB for the JUNO experiment, QI Ming
- Water Cherenkov detector of the JUNO Veto system, Ruiguang Wang
- The electronics readout system of the JUNO experiment, Pierre-Alexandre Petitjean

BACKUP

JUNO TAO

TAO = Taishan Anti-neutrino Observatory

TAO will measure the anti-neutrino spectrum at % level, to provide:

- a model-independent reference spectrum for JUNO
- a benchmark for investigation of the nuclear database

Detector concept:

2.6 t Gd-loaded LS @-50°C+ SiPM

700k/year @ 40m from Taishan 20x JUNO 6-year data in 3 year Energy resolution: 1.5%/√E

Status:

Design and R&D on the way:

- LS works in -50°C
- SiPM & its readout electronics
- Mechanical design
- Measured onsite muon/neutron flux
- Prototype a low temperature LS detector

