A High-Granularity Timing Detector (HGTD) for the Phase-II upgrade of ATLAS **Detector concept, description and R&D and first beam test results**

EPS HEP, Ghent 11.07.2019

Alexander Leopold, on behalf of HGTD

High-Granularity Timing Detector

- ATLAS upgrade detector for the high luminosity LHC
- uses LGAD sensors to measure time with $\sigma_t \sim 30-50$ ps per track until end of HL-LHC
- covers range $2.4 \leq |\eta| \leq 4.0$
- two disks positioned at $z = \pm 3.5m$ from the interaction point

Motivation

- at HL-LHC (average pile-up (PU) of 200 p-p collisions per bunch crossing) expecting average vertex density of ~1.4 vertices/mm
- in very forward region track-vertex association with the inner tracker (ITk) alone becomes ambiguous
- HGTD takes advantage of spread in time of collisions (~180ps)

Basic idea:

- ★ Tag particle tracks with a time
- ★ Assign a time to the HS interaction
- * Remove tracks that are out of time relative to
 - this reference to *reduce pile-up*
- ★ application in PU-jet rejection, b-tagging, lepton isolation, ...

Detector Layout - overview

- active area: $120 \text{ mm} (|\eta|=4) < r < 640 \text{ mm} (|\eta|=2.4)$
- overall thickness of **12.5 cm**
- 3.59 M channels
- active area 6.4 m²
- occupancy <10%
- max. expected radiation levels of 5.1 x 10¹⁵ n_{eq}/cm² (including safety factors and replacement of inner ring at 2000 fb-1)
- N_{hits} transmitted in reduced eta range (2.4 < $|\eta|$ < 3.1) at 40MHz for online luminosity measurement Front cover

Detector Layout - active area

- detector consists of two double sided layers in each end cap
- overlap of sensors on the front- and backside of the respective layers of 80% (20%) for $|\eta|\!>\!3.1$ ($|\eta|\!<\!3.1$)
- time resolution of $\sigma_t \sim 40-85$ ps per hit until end of HL-LHC
- track time resolution target requires 2 hits per track on average
- better coverage and more homogeneous response achieved by rotating layers by 15° in opposite direction

in each end cap e of the respective

end of HL-LHC r track on average sponse achieved

Sensor (19.5 mm) Guard ring (2×0.5 mm) ASIC (22.0 mm) Cooling plate 22.0 mm 19.5 mm

ander Leopold

- sensor

Sensor (LGAD)

- Low Gain Avalanche Detector
- n-on-p silicon detector with extra highly doped p-layer Internal amplification
- sensor size of **2x4 cm²**
- per sensor **450** pixels with a pitch size of **1.3x1.3 mm²**
- Thickness of $<300 \,\mu m$, active thickness of 50 μm
- allows for a gain of 20 before irradiation
- target time resolution $\sigma_t < 40 \text{ps}$ at start of operations, and 70-85 ps at end of lifetime
- sustain radiation levels of up to 5.1 x 10¹⁵ n_{eq}/cm²
- maximum leakage current of 5 µA

- module

- threshold (TOT) and number of hits

Sensor performance

2D maps showing efficiency and time resolution before and after irradiation

in pad center: <eff>_{unirr} ~ 99% <eff>_{irr} > 95%

very homogeneous time resolution over the sensor pad

Time resolution

 σ_t depending on the bias voltage for *different fluence* levels (4 different sensors)

 $1.5 \times 10^{15} n_{eq}/cm^2$

Collected charge and leakage current • minimum required collected charge of **2.5 fC** • maximum tolerated leakage current **5 µA**

Physics performance - selection

HGTD /

Summary

- the forward region
- testing in lab and under beam conditions
- for April 2020
- currently re-optimising the layout with 3 rings to mitigate the max. radiation levels to 3x10¹⁵ n_{eq}/cm² (2 to 3 replacements of the most inner rings during HL-LHC)

• conditions at HL-LHC make track-vertex association a very challenging task, especially in

• HGTD adds time measurements to tracks in order to mitigate pile-up in the forward region

• extensive R&D of sensors and electronics to achieve the targeted performance goals,

• HGTD Technical Proposal approved by LHCC and the Technical Design Report is planned

Pile-up density

Arbitrary units

2x2 Pad Array

taken from arxiv 1804.00622

Sensors for testing

Manu-	Name	Thickness	Gain layer	С	Gain layer	Gain layer
facturer		[µm]	dopant	implant	depth [µm]	depletion [V]
HPK	HPK-3.1-50	50	Boron	No	1.6	40
HPK	HPK-3.2-50	50	Boron	No	2.2	55
HPK	HPK-PROTO-30	30	Boron	No	1.6	50
FBK	FBK-UFSD3-C-60	60	Boron	Yes	0.6	20
CNM	CNM-AIDA-50	50	Boron	No	1.0	45
Manu-	Name	Full	V _{BD}	Nominal	Nominal	Max. Array
Manu- facturer	Name	Full depletion [V]	V _{BD} −30 °C [V]	Nominal IP [µm]	Nominal edge[µm]	Max. Array Size
Manu- facturer HPK	Name HPK-3.1-50	Full depletion [V] 50	V _{BD} -30 °C [V] 200	Nominal IP [µm] 30→95	Nominal edge[μ m] 200 \rightarrow 500	Max. Array Size 15 × 15
Manu- facturer HPK HPK	Name HPK-3.1-50 HPK-3.2-50	Full depletion [V] 50 65	V _{BD} -30 °C [V] 200 70	Nominal IP [μ m] $30 \rightarrow 95$ $30 \rightarrow 95$	Nominal edge[μ m] 200 \rightarrow 500 200 \rightarrow 500	Max. Array Size 15×15 15×15
Manu- facturer HPK HPK HPK	Name HPK-3.1-50 HPK-3.2-50 HPK-PROTO-30	Full depletion [V] 50 65 75	V _{BD} -30 °C [V] 200 70 110	Nominal IP [μ m] $30 \rightarrow 95$ $30 \rightarrow 95$ -	Nominal edge[μ m] 200 \rightarrow 500 200 \rightarrow 500 -	Max. Array Size 15 × 15 15 × 15 Single
Manu- facturer HPK HPK HPK FBK	Name HPK-3.1-50 HPK-3.2-50 HPK-PROTO-30 FBK-UFSD3-C-60	Full depletion [V] 50 65 75 25	V _{BD} -30 °C [V] 200 70 110 170	Nominal IP [μ m] $30 \rightarrow 95$ $30 \rightarrow 95$ - 37	Nominal edge[μ m] 200 \rightarrow 500 200 \rightarrow 500 - 200 \rightarrow 500	Max. Array Size 15×15 15×15 Single 5×5

Collected charge

Collected charge

Array measurements

Array Row

Array Column

Test beam setup

taken from arxiv 1804.00622

