A High-Granularity Timing Detector (HGTD)
for the Phase-II upgrade of ATLAS
Detector concept, description and R&D and first beam test results

EPS HEP, Ghent
11. 07. 2019

Alexander Leopold, on behalf of HGTD
High-Granularity Timing Detector

- ATLAS upgrade detector for the high luminosity - LHC
- uses LGAD sensors to measure time with $\sigma_t \sim 30-50\text{ps per track}$ until end of HL-LHC
- covers range $2.4 \leq |\eta| \leq 4.0$
- two disks positioned at $z = \pm 3.5\text{m}$ from the interaction point
Motivation

- at HL-LHC (average pile-up (PU) of 200 p-p collisions per bunch crossing) expecting average vertex density of ~1.4 vertices/mm
- in very forward region track-vertex association with the inner tracker (ITk) alone becomes ambiguous
- HGTD takes advantage of spread in time of collisions (~180ps)

Basic idea:
★ Tag particle tracks with a time
★ Assign a time to the HS interaction
★ Remove tracks that are out of time relative to this reference to reduce pile-up
★ application in PU-jet rejection, b-tagging, lepton isolation, …
Detector Layout - overview

- active area:
 \[120 \text{ mm } (|\eta|=4) < r < 640 \text{ mm } (|\eta|=2.4)\]
- overall thickness of 12.5 cm
- 3.59 M channels
- active area 6.4 m²
- occupancy <10%
- max. expected radiation levels of \(5.1 \times 10^{15} \text{ n}_{\text{eq}}/\text{cm}^2\) (including safety factors and replacement of inner ring at 2000 fb-1)
- \(N_{\text{hits}}\) transmitted in reduced eta range \((2.4 < |\eta| < 3.1)\) at 40MHz for online luminosity measurement
Detector Layout - active area

- detector consists of two double sided layers in each end cap
- overlap of sensors on the front- and backside of the respective layers of 80% (20%) for \(|\eta|>3.1\) (\(|\eta|<3.1\))
- time resolution of \(\sigma_t \approx 40-85\) ps per hit until end of HL-LHC
- track time resolution target requires 2 hits per track on average
- better coverage and more homogeneous response achieved by rotating layers by 15° in opposite direction

\[\begin{array}{c|c|c}
 R < 320 \text{ mm} & R > 320 \text{ mm} \\
 \text{\((|\eta| > 3.1)\)} & \text{\((|\eta| < 3.1)\)} \\
 \hline
 N_{\text{hits}} \geq 2 & 88\% & 72\% \\
 N_{\text{hits}} = 0 & 1.6\% & 2.8\% \\
 \langle N_{\text{hits}} \rangle & 2.8 & 1.9 \\
 \end{array} \]

- Detector consists of two double sided layers in each end cap
- Overlap of sensors on the front- and backside of the respective layers of 80% (20%) for \(|\eta|>3.1\) (\(|\eta|<3.1\))
- Time resolution of \(\sigma_t \approx 40-85\) ps per hit until end of HL-LHC
- Track time resolution target requires 2 hits per track on average
- Better coverage and more homogeneous response achieved by rotating layers by 15° in opposite direction
Modules

• 1 **LGAD** sensor
• 2 **ALTIROC** readout chips bump bonded to sensor
• 1 **FLEX** cable glued to bare module, wire-bonded to ASIC (signals, low and high voltage)

Overview of contributions to the time resolution:

\[
\sigma^2_{hit} = \sigma^2_{Landau} + \sigma^2_{jitter} + \sigma^2_{time-walk} + \sigma^2_{TDC} + \sigma^2_{clock}
\]

- ~25 ps (thin sensor)
- <25 ps at large gain after correction
- <10 ps from clock distribution, <10 ps
- Bin width, 20 ps / \sqrt{12}

- 7984 modules
- Total thickness of ~1mm
- Glued to support plates (staves and rings)
- Plates screwed to cooling plate
Sensor (LGAD)

- Low Gain Avalanche Detector
- n-on-p silicon detector with extra highly doped p-layer
 – internal amplification

- sensor size of **2x4 cm²**
- per sensor **450** pixels with a pitch size of **1.3x1.3 mm²**
- Thickness of <300 µm, active thickness of 50 µm
- allows for a **gain of 20** before irradiation

- target time resolution \(\sigma_t < 40\text{ps} \) at start of operations, and **70-85** ps at end of lifetime
- sustain radiation levels of up to **5.1 x 10^{15} n_{eq}/cm²**
- maximum leakage current of 5 µA
Front-end ASIC (ALTIROC)

- 225 readout channels per ASIC, 2 ASICs per module
- bump bonded to LGAD sensor
- sends digitised output to peripheral electronics

- measures **time of arrival** (TOA), **time over threshold** (TOT) and **number of hits**

Discriminator Threshold (DAC Units)

- **Before TimeWalk Correction**
- **After TimeWalk Correction**

Preliminary HGTD Testbeam October 2018

- **Jitter [ps]** = 3.5 pF - Threshold 1 fC

Schematic of the single-channel readout electronics

- **Bias Blocks**
- **Control unit**
- **Hit Data Formatting**
- **Luminosity**

- **Fast command (link from lpGBT)**
- **320MHz clock from lpGBT**
- **32Gb/s, 64Gb/s or 128Gb/s link to lpGBT**
- **64Gb/s link to lpGBT**

- **Fast command (link from lpGBT)**
- **320MHz clock from lpGBT**
- **32Gb/s, 64Gb/s or 128Gb/s link to lpGBT**
- **64Gb/s link to lpGBT**

Common digital part: transmit digitized data, receive slow control, generate and align clocks

Alexander Leopold

- 225 readout channels per ASIC, 2 ASICs per module
- bump bonded to LGAD sensor
- sends digitised output to peripheral electronics

measures time of arrival (TOA), time over threshold (TOT) and number of hits
Sensor performance

2D maps showing efficiency and time resolution before and after irradiation

in pad center:

\(<\text{eff}>_{\text{unirr}} \sim 99\%\)

\(<\text{eff}>_{\text{irr}} > 95\%\)

very homogeneous time resolution over the sensor pad
Time resolution

σₜ depending on the bias voltage for different fluence levels (4 different sensors)

can achieve σₜ < 35 ps up to 1.5×10^{15} n$_{eq}$/cm2

Landau fluctuations determine maximum reachable time resolution
Collected charge and leakage current

- minimum required collected charge of **2.5 fC**
- maximum tolerated leakage current **5 µA**
Physics performance - selection

Pile-up jet suppression

<table>
<thead>
<tr>
<th>Rejection of pile-up jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITk-only</td>
</tr>
</tbody>
</table>

ATLAS Simulation Preliminary

\(\sqrt{s} = 14 \text{ TeV}, <p_T> = 200 \text{ GeV} \)

HGTD Pythia8 di-jets

\(30 < p_T < 50 \text{ GeV} \)

\(2.5 < |\eta| < 3.8 \)

Light-jet mis-tagging efficiency

<table>
<thead>
<tr>
<th>Ratio to ITk</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

ATLAS Simulation Preliminary

\(\sqrt{s} = 14 \text{ TeV}, <p_T> = 200 \text{ GeV} \)

MV1 70% fixed cut WP

B-tagging

\(\eta = 14 \text{ TeV}, <p_T> = 200 \text{ GeV} \)

\(Z \rightarrow \mu^+\mu^- \)

\(2.4 < |\eta| < 4.0 \)

HGTG

\(|\Delta R(\mu, T)| > 0.5 \)

ATLAS Full Simulation Preliminary

\(\sqrt{s} = 14 \text{ TeV}, <p_T> = 200 \text{ GeV} \)

\(Z \rightarrow e^+e^- \)

\(|\Delta R(e, T)| > 0.5 \)

Lepton isolation

\(\eta = 14 \text{ TeV}, <p_T> = 200 \text{ GeV} \)

\(Z \rightarrow e^+e^- \)

\(|\Delta R(e, T)| > 0.5 \)

ATLAS Full Simulation Preliminary

\(\sqrt{s} = 14 \text{ TeV}, <p_T> = 200 \text{ GeV} \)

\(Z \rightarrow e^+e^- \)

\(|\Delta R(e, T)| > 0.5 \)

ATLAS Full Simulation Preliminary

\(\sqrt{s} = 14 \text{ TeV}, <p_T> = 200 \text{ GeV} \)

\(Z \rightarrow e^+e^- \)

\(|\Delta R(e, T)| > 0.5 \)
Summary

• conditions at HL-LHC make track-vertex association a very challenging task, especially in the forward region

• HGTD adds time measurements to tracks in order to mitigate pile-up in the forward region

• extensive R&D of sensors and electronics to achieve the targeted performance goals, testing in lab and under beam conditions

• HGTD Technical Proposal approved by LHCC and the Technical Design Report is planned for April 2020

• currently re-optimising the layout with 3 rings to mitigate the max. radiation levels to $3 \times 10^{15} \text{n}_{\text{eq}}/\text{cm}^2$ (2 to 3 replacements of the most inner rings during HL-LHC)
Pile-up density

ATLAS Preliminary
HGTD-Si Simulation
Electrons $p_T = 45$ GeV

- Run $\langle q_1 \rangle = 30, \sigma_z = 45$ mm
- Nominal $\langle q_1 \rangle = 200, \sigma_z = 45$ mm

Arbitrary units vs. pileup density [vertex/mm]
2x2 LGAD array

taken from arxiv 1804.00622
Sensors for testing

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Name</th>
<th>Thickness [µm]</th>
<th>Gain layer dopant</th>
<th>C implant</th>
<th>Gain layer depth [µm]</th>
<th>Gain layer depletion [V]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPK</td>
<td>HPK-3.1-50</td>
<td>50</td>
<td>Boron</td>
<td>No</td>
<td>1.6</td>
<td>40</td>
</tr>
<tr>
<td>HPK</td>
<td>HPK-3.2-50</td>
<td>50</td>
<td>Boron</td>
<td>No</td>
<td>2.2</td>
<td>55</td>
</tr>
<tr>
<td>HPK</td>
<td>HPK-PROTO-30</td>
<td>30</td>
<td>Boron</td>
<td>No</td>
<td>1.6</td>
<td>50</td>
</tr>
<tr>
<td>FBK</td>
<td>FBK-UFSD3-C-60</td>
<td>60</td>
<td>Boron</td>
<td>Yes</td>
<td>0.6</td>
<td>20</td>
</tr>
<tr>
<td>CNM</td>
<td>CNM-AIDA-50</td>
<td>50</td>
<td>Boron</td>
<td>No</td>
<td>1.0</td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Name</th>
<th>Full depletion [V]</th>
<th>V_{BD} -30°C [V]</th>
<th>Nominal IP [µm]</th>
<th>Nominal edge[µm]</th>
<th>Max. Array Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPK</td>
<td>HPK-3.1-50</td>
<td>50</td>
<td>200</td>
<td>30→95</td>
<td>200→500</td>
<td>15×15</td>
</tr>
<tr>
<td>HPK</td>
<td>HPK-3.2-50</td>
<td>65</td>
<td>70</td>
<td>30→95</td>
<td>200→500</td>
<td>15×15</td>
</tr>
<tr>
<td>HPK</td>
<td>HPK-PROTO-30</td>
<td>75</td>
<td>110</td>
<td>-</td>
<td>-</td>
<td>Single</td>
</tr>
<tr>
<td>FBK</td>
<td>FBK-UFSD3-C-60</td>
<td>25</td>
<td>170</td>
<td>37</td>
<td>200→500</td>
<td>5×5</td>
</tr>
<tr>
<td>CNM</td>
<td>CNM-AIDA-50</td>
<td>50</td>
<td>220</td>
<td>37→57</td>
<td>200→500</td>
<td>5×5</td>
</tr>
</tbody>
</table>
Efficiency

HGTD Test Beam Preliminary

- **Efficiency**
 - 0.1% noise occupancy
 - 0.01% noise occupancy

Charge [fC]

- 8x10^-11
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
Collected charge

![Graphs showing collected charge vs bias voltage for different samples.](image-url)
Collected charge

HGTD Preliminary

Collected charge for $3 \times 10^{15} \text{N}_e/\text{cm}^2$
- HPK-3.1-50
- HPK-3.2-50
- FBK-UFS3-C-60
- WF2 simulation deep B+C (N. Cartiglia)

Collected charge for $6 \times 10^{15} \text{N}_e/\text{cm}^2$
- HPK-3.1-50
- HPK-3.2-50
- WF2 simulation deep B+C (N. Cartiglia)
Array measurements

HGTD Preliminary

HPK Type 3.1
5x5 array W8 P11

Voltage [V]

Current [A] $\times 10^{-9}$

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0 50 100 150 200 250

Voltage [V] V_{BD}

Array Row

Array Column

HGTD Preliminary
HPK-3.1-50
15x15 Array

Preliminary HGTD
HPK-3.1-50
15x15 Array

Alexander Leopold
Test beam setup

taken from arxiv 1804.00622