Intrinsic quantum mechanics behind the Standard Model?

Ole L. Trinhammer.
Department of Physics, Technical University of Denmark
ole.trinhammer@fysik.dtu.dk

The theory unfolded

The Laplacian in (1) contains off-toroidal derivatives which are represented by the off-diagonal Gell-Mann matrices. We choose three of these to represent spin and group them into $S=\left(S_{1}, S_{2}, S_{3}\right)$. This interpretation is supported by their commutation
relations as body fixed angular momentum. The relation between space and intrinsic space is like the relation in nuclear relations as body fixed angular momentum. The relation between space and intrinsic space is like the relation in nuclear physic
between fixed coordinate systems and intrinsic body fixed coordinate systems for the description of rotational degrees of freedom. The remaining three off-toroidal derivatives are grouped into $\mathbf{M}=\left(M_{1}, M_{2}, M_{3}\right)$, which is related to hypercharge and isospin. The Laplacian in polar decomposition thus reads

The off
atom
$-\frac{\hbar}{2 m}\left[\frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial}{\partial r}-\frac{1}{r^{2}} \mathrm{~L}^{2}\right] \psi(r, \theta, \varphi)+V(r) \psi(r, \theta, \varphi)=E \psi(r, \theta, \varphi)$
$\psi(r, \theta, \varphi)=R(r) Y(\theta, \varphi)$

With the periodic potential in (2) the complete Schrödinger equation reads with $\mathrm{E}=E / \Lambda$ and $\Lambda \equiv \hbar c / a=214.27 \mathrm{MeV}$

$$
\left.-\frac{1}{2}\left(\sum_{j=1}^{3} \frac{1}{J} \frac{\partial^{2}}{\partial \theta_{j}^{2}} J+2-\sum_{k=1}^{3} \frac{\left(S_{k}^{2}+M_{k}^{2}\right) / \hbar^{2}}{k \sin ^{2} \frac{1}{2}\left(\theta_{i}-\theta_{j}\right)}\right)+w\left(\theta_{1}\right)+w\left(\theta_{2}\right)+w\left(\theta_{3}\right)\right] \Psi(u)=E \Psi(u) .
$$

The constant term in the Laplacian is interpreted as a global curvature potential from differentiating through J.

$$
\left[-\Delta_{\mathrm{e}}+W\right] R\left(\theta_{1}, \theta_{2}, \theta_{3}\right)=2 \mathrm{E} R\left(\theta_{1}, \theta_{2}, \theta_{3}\right)
$$

where $\Delta_{e}=\sum_{j=1}^{3} \frac{\partial^{2}}{\partial \theta_{j}^{2}}$ and $W=-2+\frac{1}{3}\left(S(S+1)+M^{2}\right) \sum_{k<1}^{3} \frac{1}{8 \sin ^{2} \frac{1}{2}\left(\theta_{i}-\theta_{j}\right)}+2\left(w\left(\theta_{1}\right)+w\left(\theta_{2}\right)+w\left(\theta_{3}\right)\right)$. Now R can be expanded on Slater
determinants constructed from 1D eigenstates of
$\left[-\frac{1}{2} \frac{\partial^{2}}{\partial \theta^{2}}+w(\theta)\right] \varphi_{1}(\theta)=e \varphi_{1}(\theta)$
\qquad
\quad as $R=\sum_{l m n} a_{l m n} R_{l m n} \quad R_{l m n}(\boldsymbol{\theta})=\left|\begin{array}{lll}\varphi_{l}\left(\theta_{1}\right) & \varphi_{l}\left(\theta_{2}\right) & \varphi_{l}\left(\theta_{3}\right) \\ \varphi_{m}\left(\theta_{1}\right) & \varphi_{m}\left(\theta_{2}\right) & \varphi_{m}\left(\theta_{3}\right) \\ \varphi_{n}\left(\theta_{1}\right) & \varphi_{n}\left(\theta_{2}\right) & \varphi_{n}\left(\theta_{3}\right)\end{array}\right|$

The figure shows 1 D eigenstates with periodicity 2π to the left and periodicity 4π for diminished states in the right column. We can couple a diminishing period doubling in level two with an augmenting period doubling in level one. We interpret these coupled period (e.g. thgs as ren) to a charged tansformaion rom

Conclusions

The Hamiltonian in When Resonances When Decay, fragmentatio Spontaneous symmatio
Higgs mass
Electroweak scale

Key predictions

*accurate Higgs mass, Cabibbo angle, neutral pentaquarks

Bloch wave degrees of freedom opened by Higgs mechanism

Parton distribution and spin structure functions

Spin structure function
$g_{1}^{p}(x)=\frac{1}{2}\left[e_{u}^{2} \frac{1}{3} f_{T_{u}}(x)+e_{d}^{2 \frac{1}{3}} f_{d}(x)\right]$ Magnetic dipole moment
$m_{q}=\int_{0}^{1} x m_{p} f_{q}(x) d x, \quad \mu_{q}=\frac{1 e_{q}{ }^{h}}{m_{q}}$ $\mu_{p}=\frac{4}{3} \mu_{u}-\frac{1}{3} \mu_{d}=2.778 \ldots \mu_{N}, \quad$ exp: $2.792847356(23) \mu_{N}$

No fiting parameters

