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The Laplacian in (1) contains off-toroidal derivatives which are represented by the off-diagonal Gell-Mann matrices. We choose 
three of these to represent spin and group them into                       . This interpretation is supported by their commutation 
relations as body fixed angular momentum. The relation between space and intrinsic space is like the relation in nuclear physics
between fixed coordinate systems and intrinsic body fixed coordinate systems for the description of rotational degrees of 
freedom. The remaining three off-toroidal derivatives are grouped into                         , which is related to hypercharge and 
isospin. The Laplacian in polar decomposition thus reads
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Abstract
We suggest the gauge groups SU(3), SU(2) and U(1) to share a common origin in U(3).
We take the Lie group U(3) to serve as an intrinsic configuration space for baryons. A spontaneous symmetry break in the baryonic state 
selects a U(2) subgroup for the Higgs mechanism. The Higgs field enters the symmetry break to relate the strong and electroweak energy 
scales by exchange of one quantum of action between the two sectors. This shapes the Higgs potential to fourth order.
Recently intrinsic quantum mechanics has given a suggestion for the Cabibbo angle from theory (EPL124-2018) and a prediction for the Higgs 
couplings to gauge bosons (EPL125-2019). Previously it has given the nucleon mass and the parton distribution functions for u and d quarks 
in the proton (EPL102-2013). It has given a quite accurate equation for the Higgs mass in closed form (IJMPA30-2015) and an N and Delta 
spectrum essentially without missing resonances (arXiv:1109.4732).
The intrinsic space is to be distinguished from an interior space. The intrinsic space is non-spatial, i.e. no gravity in intrinsic space. The 
configuration variable is like a generalized spin variable excited from laboratory space by kinematic generators: momentum, spin and Laplace-
Runge-Lenz operators.
The baryon dynamics resides in a Hamiltonian on U(3) and projects to laboratory space by the momentum form of the wavefunction. The 
momentum form generates conjugate quark and gluon fields. Local gauge invariance in laboratory space follows from unitarity of the 
configuration variable and left-invariance of the coordinate fields in the intrinsic space.
Future work should aim to invoke leptons in the second and third generations and quarks in the third.

Intrinsic space for baryon mass states

Parton distribution and spin structure functions
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The Hamiltonian in (1) or (3) may be seen as an effective model or interpreted more radically in an intrinsic conception:
When Resonances - impact momenta act as introtangling operators to generate the maximal torus of U(3).
When Decay, fragmentation - the momentum form induces quark and gluon fields as projections in laboratory space.
Spontaneous symmetry break in baryonic state on U(3) – selects U(2) subspace for Higgs mechanism.
Higgs mass - intrinsic periodic potential shapes the Higgs potential to fourth order.
Electroweak scale - fine structure coupling and strong scale sets electroweak energy scale via Higgs vev.

The theory unfolded

Bloch wave degrees of freedom opened by Higgs mechanism
Approximate energy 
levels for baryonic 
states are found by 
combinations of three 
1D eigenstates of the 
three torus angles. 
These eigenstates 
originally have the 
same periodicity as 
the potential. 
However a coupled 
period doubling can 
decrease the total 
energy by introducing 
Bloch wave degrees 
of freedom.

We boost a proton from 𝐸𝐸0 = 𝑚𝑚𝑝𝑝𝑐𝑐2 to
energy E by impacting upon it a
massless four-momentum q to hit a
parton xP. After impact the parton
carries a mass xE. Thus

which yields for the parton fraction

and boost parameter
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We project from a state 
constructed from 
trigonometric functions 
to mimic approximately 
the period doublings in 
the proton state

We trace the boost with 
different toroidal
generators.
The projection involves 
the momentum form dR
summed over all three 
colours.
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We use a reinterpreted Kogut-Susskind Hamiltonian with a Manton potential. We
interpret it as describing the intrinsic dynamics for baryon mass states. Thus the
Lie group U(3) is treated as intrinsic configuration space

(1)

It is the hypothesis of the present work, that the eigenstates of the above
Schrödinger equation describe the baryon mass spectrum with u being the
configuration variable of an entire baryonic entity and a is a scale settled by the
classical electron radius

The potential is half the squared geodetic distance from the ‘point’ u to the ‘origo’ e

(2)

where are the eigenvalues of u. The potential is periodic in parameter space

We find exact solutions for alleged N-states and approximate solutions for both
alleged N-states and Δ-states. From the ground state eigenvalue En=En/Λ we get
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Cabibbo angle

sin 𝜃𝜃𝐶𝐶 = Tr 𝑇𝑇𝑢𝑢
†𝑇𝑇𝑠𝑠 = −

2
9
→ cos𝜃𝜃𝐶𝐶 = 0.974996⋯ ≈ |𝑉𝑉𝑢𝑢𝑢𝑢| = 0.97420 ± 0.00021

The Higgs mass, 125.095+/-0.014 GeV is in excellent 
agreement with the present world average from a global 
electroweak fit 125.09+/-0.15 GeV (table 3.1 in ref §) .

Excess Higgs to gauge boson couplings 𝜇𝜇𝐻𝐻𝐻𝐻𝐻𝐻
𝜇𝜇𝐻𝐻𝐻𝐻𝐻𝐻, SM

= 1
|𝑉𝑉𝑢𝑢𝑢𝑢|

≈

1.03.

Neutral charge, neutral flavour resonances N0 to be sought at 
e.g. 2839, … 3206, …, 4499, 4652, 4723, 5103, 5148… MeV. 
Orange resonances ~ open pentaquark channel at LHCb.

Key predictions: 
*accurate Higgs mass, Cabibbo angle, neutral pentaquarks
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The off-torus term is analogous to the centrifugal term in the usual treatment of the radial wave function for the hydrogen 
atom

With the periodic potential in (2) the complete Schrödinger equation reads with                  and 

The constant term in the Laplacian is interpreted as a global curvature potential from differentiating through J.
A factorization of                                                              gives for                               with

where and                   . Now R can be expanded on Slater

determinants constructed from 1D eigenstates of

as

The figure shows 1D eigenstates with periodicity 2π to the left and 
periodicity 4π for diminished states in the right column.
We can couple a diminishing period doubling in level two with an 
augmenting period doubling in level one. We interpret these coupled
period doublings as representing the transformation from a neutral 
state (e.g. the neutron) to a charged state (e.g. the proton).
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No fitting parameters

We interpret the period doublings as related by the Higgs
mechanism to the creation of the proton charge in the
neutron decay. Similar states all with one even label give the
N resonances. Two even labels give possibilities of double
charges which we interpret as Δ resonances.

For three even labels the complex phases factorize out and
the states may contribute to neutral states.

The black dots in the figure show the Bloch wave number
choices for the neutron (left) and the proton state (right).

One may interpret cosmologically the constant delta in the
Higgs potential as a contribution to the dark energy content
of the universe with one delta for every detained neutron,
either primordial or created from the steady transformation
of protons into heavier elements during fusion in stars.
Accelerating expansion is in accordance with increasing
helium and metallicity content Y+Z in stars:

The resulting shift in ground state eigenvalue is
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Spin structure function 𝑔𝑔1𝑃𝑃 𝑥𝑥 = 1
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𝑓𝑓𝑇𝑇𝑑𝑑(𝑥𝑥)]

Magnetic dipole moment 𝑚𝑚𝑞𝑞 = ∫0
1 𝑥𝑥𝑚𝑚𝑝𝑝𝑓𝑓𝑇𝑇𝑞𝑞 𝑥𝑥 d𝑥𝑥 , 𝜇𝜇𝑞𝑞 = 1

2
𝑒𝑒𝑞𝑞ℏ
𝑚𝑚𝑞𝑞

𝜇𝜇𝑝𝑝 =
4
3
𝜇𝜇𝑢𝑢 −

1
3
𝜇𝜇𝑑𝑑 = 2.778 … 𝜇𝜇𝑁𝑁, 𝑒𝑒𝑒𝑒𝑒𝑒: 2.792847356 23 𝜇𝜇𝑁𝑁

Spontaneous symmetry break in baryonic
state.
Exchange minimum quantum of action 
with electroweak sector:

𝛼𝛼𝜑𝜑0𝑎𝑎 = ℎ𝑐𝑐, Λ =
ℏ𝑐𝑐
𝑎𝑎

𝜑𝜑0 =
2𝜋𝜋

𝛼𝛼 𝑚𝑚𝑊𝑊
Λ =

𝑣𝑣
2

𝑣𝑣SM = 𝑣𝑣 𝑉𝑉𝑢𝑢𝑢𝑢
Intrinsic potential shapes Higgs potential
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𝜙𝜙2 − 𝜙𝜙02 2 = 𝑉𝑉H 𝜙𝜙

Λ𝜃𝜃~𝛼𝛼𝛼𝛼 at 𝜃𝜃 = 2𝜋𝜋 determines 𝜑𝜑0

Colour quark fields from momentum form
𝑐𝑐𝑗𝑗 = d𝑅𝑅𝑢𝑢(𝑖𝑖𝑇𝑇𝑗𝑗)

In general the momentum form acts as

d𝑅𝑅𝑢𝑢 𝑍𝑍 =
d
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Momentum form for quark scattering
Colour quark fields: 𝜓𝜓𝑗𝑗 𝑢𝑢 = d𝑅𝑅𝑢𝑢 𝑖𝑖𝑇𝑇𝑗𝑗 = 𝑢𝑢𝑢𝑢𝑇𝑇𝑗𝑗 [𝑅𝑅] - from left-invariant coordinate fields 𝜕𝜕𝑗𝑗|𝑢𝑢 = 𝑢𝑢𝑢𝑢𝑇𝑇𝑗𝑗

𝐻𝐻 = ∫ 𝜓𝜓† −𝑖𝑖𝑖𝑖𝑖𝜶𝜶 ⋅ 𝛁𝛁 + 𝛽𝛽𝛽𝛽𝑐𝑐2 𝜓𝜓𝑑𝑑3𝑥𝑥 (J.J. Sakurai) 𝜓𝜓† = (𝜓𝜓1∗,𝜓𝜓2∗ ,𝜓𝜓3∗)

Use left-invariance: 𝜓𝜓′ 𝑢𝑢′ †𝜓𝜓′ 𝑢𝑢′ = 𝑢𝑢′𝑖𝑖𝑇𝑇𝑗𝑗 𝑅𝑅
† 𝑢𝑢′𝑖𝑖𝑇𝑇𝑗𝑗[𝑅𝑅] = 𝑖𝑖𝑇𝑇𝑗𝑗 𝑅𝑅

† 𝑢𝑢′ †𝑢𝑢𝑢(𝑖𝑖𝑇𝑇𝑗𝑗 𝑅𝑅 )
= 𝜓𝜓 𝑢𝑢 † 𝜓𝜓 𝑢𝑢 → invariant mass term for unitary configuration variable

Impose gauge transformation: 𝜓𝜓 → 𝜓𝜓′ = 𝑔𝑔 𝑥𝑥 𝜓𝜓, 𝑔𝑔 𝑥𝑥 ∈ 𝑆𝑆𝑆𝑆 3 ,𝜕𝜕𝜇𝜇 → 𝐷𝐷𝜇𝜇 = 𝜕𝜕𝜇𝜇 + 𝐴𝐴𝜇𝜇
𝐴𝐴𝜇𝜇′ = 𝑔𝑔 𝑥𝑥 𝐴𝐴𝜇𝜇𝑔𝑔−1 𝑥𝑥 + 𝑔𝑔 𝑥𝑥 𝜕𝜕𝜇𝜇𝑔𝑔−1 𝑥𝑥 , 𝐴𝐴𝜇𝜇 = 𝑖𝑖𝑔𝑔𝑠𝑠𝐴𝐴𝜇𝜇𝑘𝑘𝜆𝜆𝑘𝑘 ,

choose 𝑢𝑢 = 𝑔𝑔 𝑥𝑥 → gauge invariance from left-invariance

𝑀𝑀 =
𝑔𝑔𝑊𝑊2

8 𝑀𝑀𝑊𝑊𝑐𝑐 2 𝑢𝑢 3 𝛾𝛾𝜇𝜇(1 − 𝛾𝛾5)(sin𝜃𝜃𝐶𝐶)𝑢𝑢(1)

⋅ [ 𝑢𝑢 4 𝛾𝛾𝜇𝜇(1 − 𝛾𝛾5)(cos𝜃𝜃𝐶𝐶)𝑣𝑣(2)]

�
𝑗𝑗=𝑟𝑟,𝑏𝑏,𝑔𝑔

[ 𝑢𝑢 3 𝑇𝑇𝑢𝑢𝑐𝑐𝑗𝑗
†𝛾𝛾𝜇𝜇 1 − 𝛾𝛾5 𝑇𝑇𝑠𝑠𝑐𝑐𝑗𝑗𝑢𝑢(1)]

= 𝑢𝑢 3 𝛾𝛾𝜇𝜇 1 − 𝛾𝛾5 𝑢𝑢 1 �
𝑗𝑗=𝑟𝑟,𝑏𝑏,𝑔𝑔

𝑐𝑐𝑗𝑗
†𝑇𝑇𝑢𝑢

†𝑇𝑇𝑠𝑠𝑐𝑐𝑗𝑗

Colour states

𝑐𝑐𝑟𝑟
† = 1,0,0 ,
𝑐𝑐𝑏𝑏
† = 0,1,0 ,
𝑐𝑐𝑔𝑔
† = (0,0,1)

Λ𝑏𝑏0 → 𝐾𝐾
0

+ 𝑃𝑃𝑐𝑐0 → 𝐾𝐾
0

+ 𝐽𝐽/𝜓𝜓 + Δ0

Spin and flavour inherent in the Laplacian

−
1
2
𝜕𝜕2

𝜕𝜕𝜃𝜃2
+ 𝑤𝑤 𝜃𝜃 𝜑𝜑𝑖𝑖 𝜃𝜃 = 𝑒𝑒𝑖𝑖𝜑𝜑𝑖𝑖 𝜃𝜃
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