

Status of MUonE experimental proposal

G. Venanzoni INFN/Pisa Italy

Reference papers

A new approach to evaluate the leading hadronic corrections to the muon g-2

C. M. Carloni Calame^a, M. Passera^b, L. Trentadue^c, G. Venanzoni^d

^aDipartimento di Fisica, Università di Pavia, Pavia, Italy ^bINFN, Sezione di Padova, Padova, Italy ^cDipartimento di Fisica e Scienze della Terra "M. Melloni" Università di Parma, Parma, Italy and INFN, Sezione di Milano Bicocca, Milano, Italy ^dINFN, Laboratori Nazionali di Frascati, Frascati, Italy

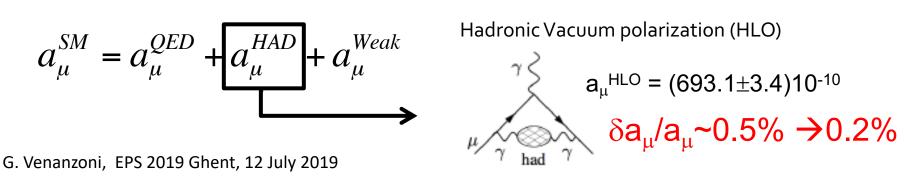
Measuring the leading hadronic contribution to the muon g-2 via μe scattering

G. Abbiendi¹, C. M. Carloni Calame², U. Marconi¹, C. Matteuzzi³, G. Montagna^{4,2},
O. Nicrosini², M. Passera⁵, F. Piccinini², R. Tenchini⁶, L. Trentadue^{7,3}, and G. Venanzoni⁸ ¹INFN, Sezione di Bologna, Bologna, Italy ²INFN, Sezione di Pavia, Pavia, Italy ³INFN, Sezione di Milano Bicocca, Milano, Italy ⁴Dipartimento di Fisica, Università di Pavia, Pavia, Italy ⁵INFN, Sezione di Padova, Padova, Italy ⁶INFN, Sezione di Pisa, Pisa, Italy ⁷Dipartimento di Fisica e Scienze della Terra "M. Melloni", Università di Parma, Parma, Italy ⁸INFN, Laboratori Nazionali di Frascati, Frascati, Italy S

Muon g-2: summary of the present status

E821 experiment at BNL has generated enormous interest:

$$a_{\mu}^{E821} = 11659208.9(6.3) \times 10^{-10}$$
 (0.54 ppm)


• Tantalizing $\sim 3\sigma$ deviation with SM (persistent since >10 years):

$$a_{\mu}^{SM} = 11659182.3(4.3) \times 10^{-10}$$

M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Eur. Phys. J. C77 (2017)

$$a_{\mu}^{E821} - a_{\mu}^{SM} \sim (26.8 \pm 7.6) \times 10^{-10} (3.5\sigma)$$

- Current discrepancy limited by:
 - Experimental uncertainty → New experiments at FNAL and J-PARC x4 accuracy
 - Theoretical uncertanty → limited by hadronic effects

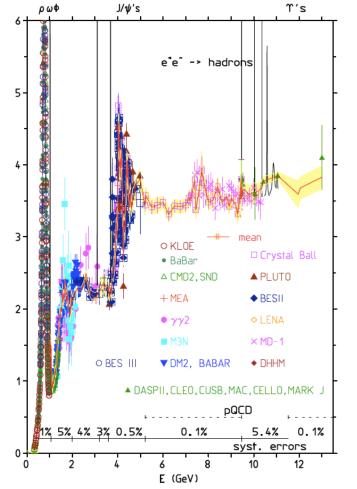
a_{μ}^{HLO} calculation, traditional way: time-like data

[C. Bouchiat, L. Michel,'61; N. Cabibbo, R. Gatto 61;L. Durand '62-'63; M. Gourdin, E. De Rafael, '69;S. Eidelman F. Jegerlehner '95,...]

• Optical theorem and analyticity:

$$\sigma(s)_{(e^+e^- \to had)} = \frac{4\pi}{s} \operatorname{Im} \Pi_{hadron}(s)$$

$$a_{\mu}^{HLO} = \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{\infty} ds \, K(s) \cdot \sigma(s)_{(e^+e^- \to had)}$$


• The main contribution is in the highly fluctuating low energy

$$K(s) = \int_0^1 dx \, \frac{x^2(1-x)}{x^2 + (1-x)(s/m^2)} \sim \frac{1}{s}$$

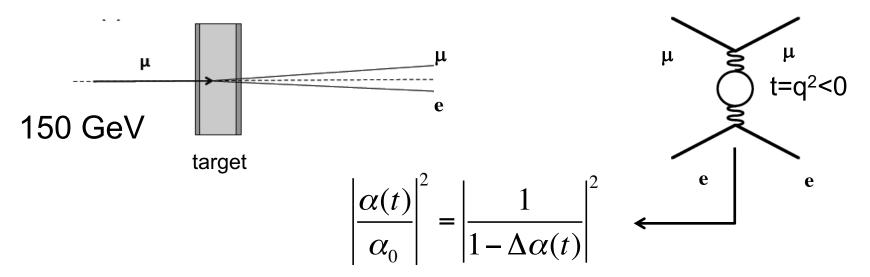
The enhancement at low energy implies that the $\rho \rightarrow \pi^+\pi^-$ resonance is dominating the dispersion integral (~ 75 %). Current precision at 0.6% \rightarrow need to be reduced by a factor ~2

G. Venanzoni, EPS 2019 Ghent, 12 July 2019

Collection of many experimental results

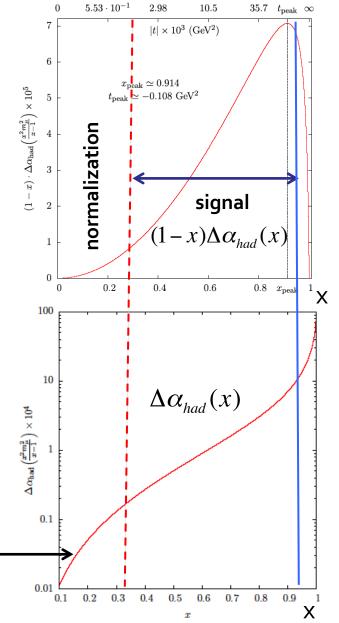
The high-energy tail of the integral is calculated using pQCD ⁴

12 July 2019 $\Delta^{\text{SM-BNL}} \sim 4\%$ of a_{μ}^{HLO}

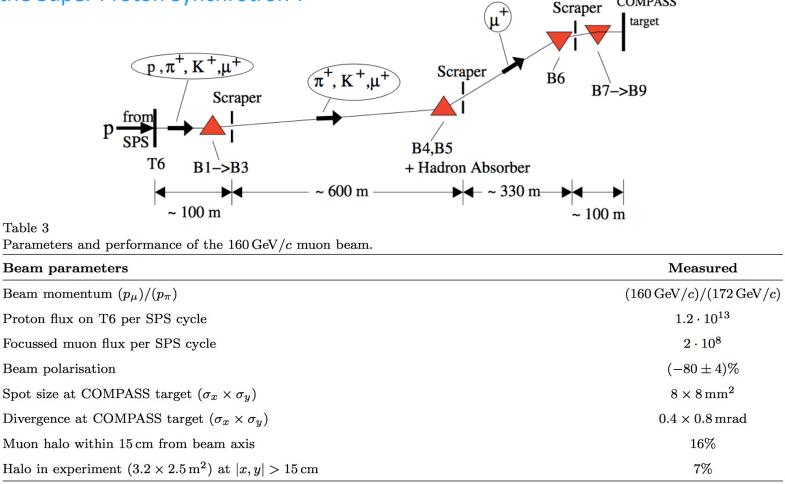

R₂

a^{HLO} from space-like region $a_{\mu}^{HLO} = \frac{\alpha}{\pi} \int_{0}^{1} dx \left(1 - x\right) \cdot \Delta \alpha_{had} \left(-\frac{x^2 m_{\mu}^2}{1 - x}\right)$ **α(t)** t=q²<0 [C.M. C. Calame et al, Phys. Lett. B 746 (2015) 325] t=-0.11 GeV² $t = \frac{x^2 m_{\mu}^2}{x - 1} \quad 0 \le -t < +\infty$ (~330 MeV) $5.53 \cdot 10^{-1}$ 2.9810.535.7 $t_{\rm peak} \propto$ 0 $x = \frac{t}{2m_{\mu}^{2}}(1 - \sqrt{1 - \frac{4m_{\mu}^{2}}{t}}); \quad 0 \le x < 1;$ ∆α_{had}(0.92)~ 10⁻³ $|t| \times 10^3 \; ({\rm GeV^2})$ $_{6} \left[(1-x)\Delta\alpha_{had}(-\frac{x^{2}}{1-r}m_{\mu}^{2}) \right]$ $x_{\rm peak} \simeq 0.914$ $\times 10^{5}$ $t_{\rm peak} \simeq -0.108 \ {\rm GeV}^2$ a_{μ}^{HLO} is given by the integral of the curve 5 (smooth behaviour) $- \, x) \cdot \Delta lpha_{ ext{had}} \Big(rac{x^2 m_\mu^2}{x - 1} \Big)$ It requires a measurement of the hadronic contribution to the effective electromagnetic 3 coupling in the space-like region $\Delta \alpha_{had}(t)$ (t=q²<0) Ŀ $\mathbf{2}$ It enhances the contribution from low q² 1 region (below 0.11 GeV^2) Its precision is determined by the uncertainty Ω on $\Delta \alpha_{had}$ (t) in this region 0.20.40.6 $0.8 \quad x_{\text{peak}}$ 0 Х 0.92 x(t=0) (t=-∞)

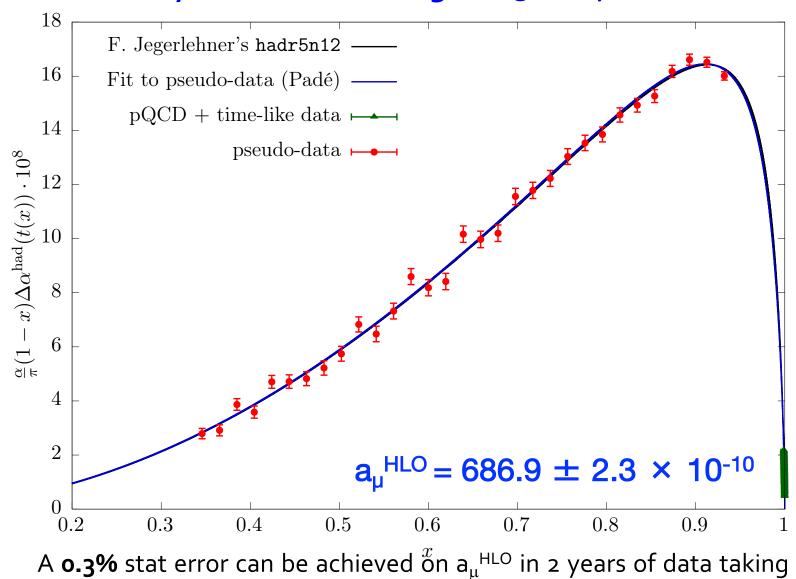
Experimental approach:


Extract $\Delta \alpha_{had}(t)$ from process $\mu e \rightarrow \mu e$ using 150 GeV μ on beryllium target. The measurement doesn't rely on the precise knowledge of the luminosity but on the shape of the distribution (relative measurement)

Why measuring $\Delta \alpha_{had}$ (t) with a 150 GeV μ beam on e⁻ target ?

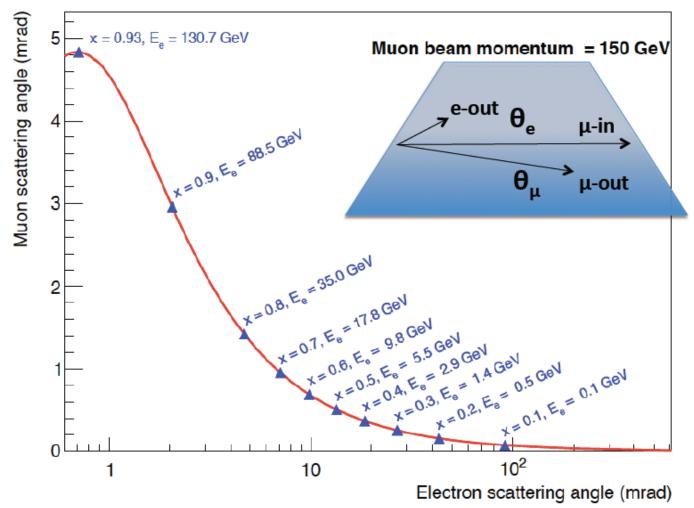

- $\mu e \rightarrow \mu e$ looks an ideal process!
- It is a pure t-channel (at LO)
- It allows to cover $8_3\%$ of the integrand $(\mathbf{a}_{\mu}^{\text{HLO}})$. The missing part can computed with time-like data+pQCD
- The kinematics is very simple: t=-2m_eE_e
- High boosted system gives access to all angles (t) in the cms region
 θ_e^{LAB}<32 mrad (E_e>1 GeV)
 θ_e^{LAB}<5 mrad

- It allows using the same detector for signal and normalization. Events at x \leq 0.3 (t~-10⁻³ GeV²) can be used for normalization ($\Delta \alpha_{had}(t) \leq 10^{-5}$)

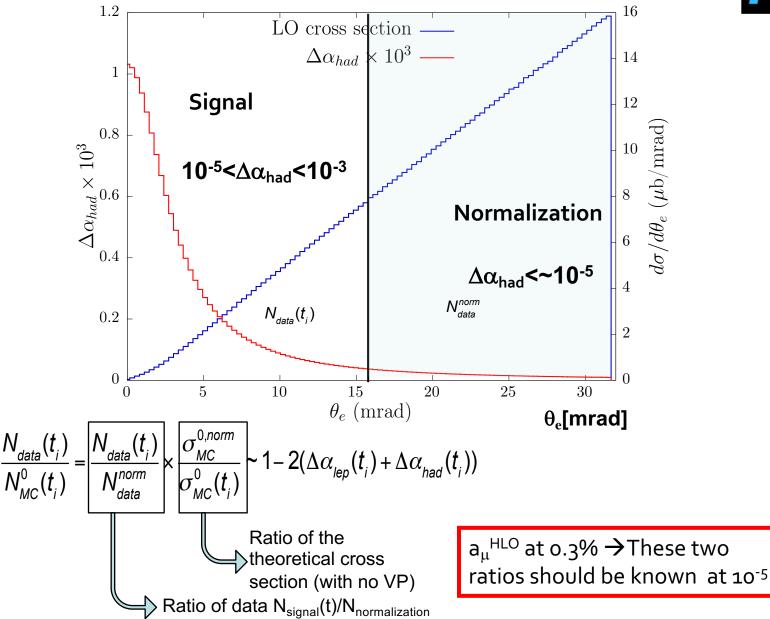

"Forty years ago, on 7 May 1977, CERN inaugurated the world's largest accelerator at the time – the Super Proton Synchrotron".

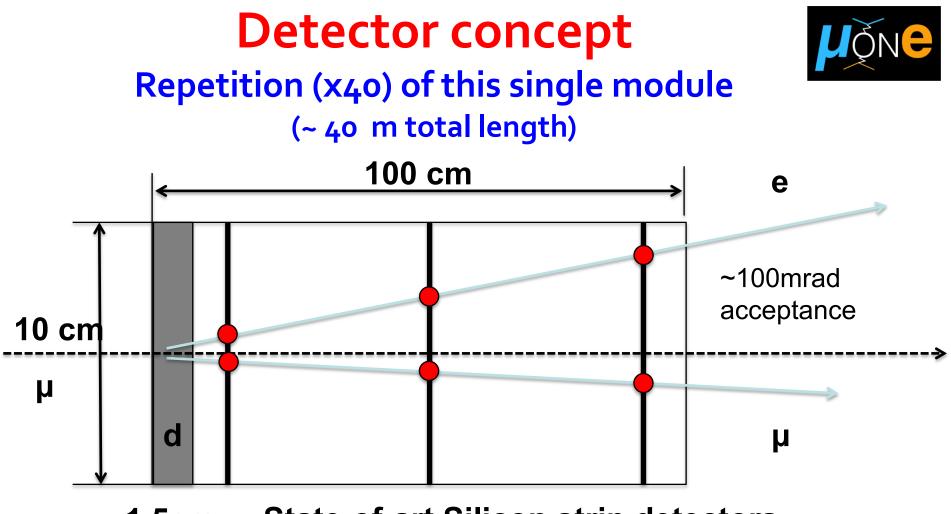
$I_{beam} > 10^7 \text{ muon/s, } E_{\mu} = 150 \text{ GeV}$

Statistical reach of MUonE on a_{μ}^{HLO} (2 years of data taking at 1.3 x10⁷µ/s)

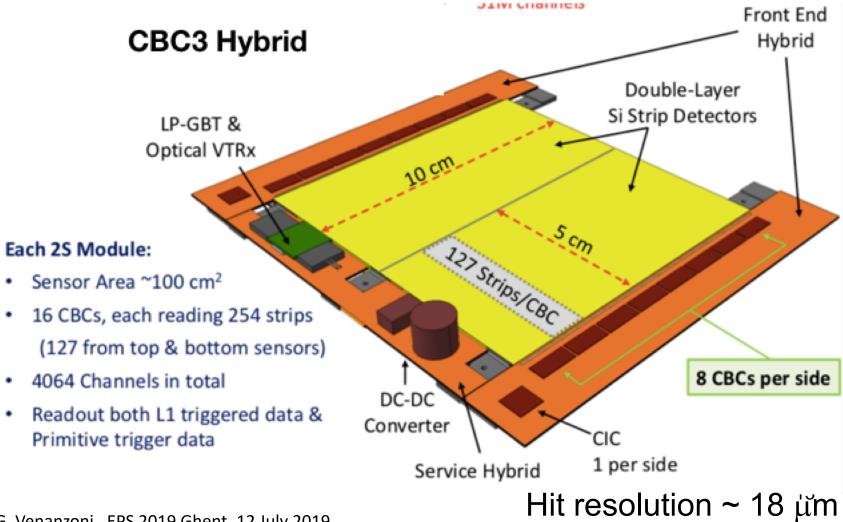


with ~10⁷ μ/s (4x10¹⁴μ total)


Elastic scattering in the (θ_e , θ_μ) plane $\mu \delta N e$



MUonE : signal/normalization region



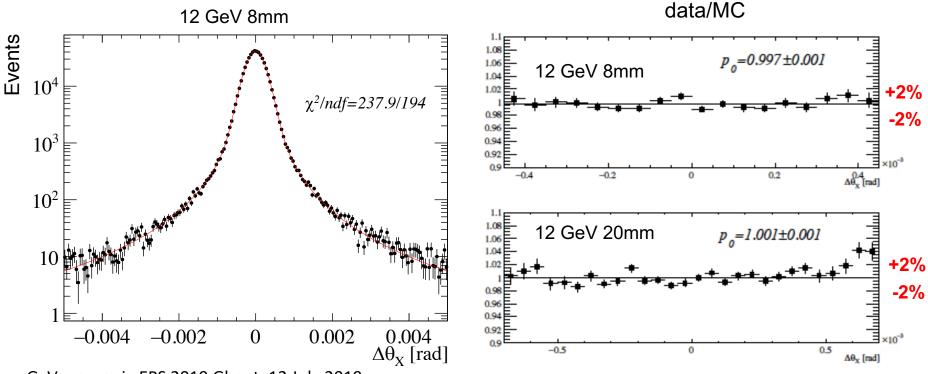
1.5cm State-of-art Silicon strip detectors Be Target hit resolution ~20 μm

Expected angular resolution ~ 20 μ m / 1m = 0.02 μ rad₁₂ At the end ECAL and Muon Filter for PID

Baseline design **2S module of CMS detector**

Systematics

- 1. Multiple scattering
- 2. Tracking (alignment & misreconstruction)
- 3. PID
- 4. Knowledge of muon momentum distribution
- 5. Background
- 6. Theoretical uncertainty on the mu-e cross section (see later)


7. ...

All the systematic effects must be known to ensure an error on the cross section < 10ppm

Results on Multiple Coulomb Scattering from 12 and 20

GeV electrons on Carbon targets (8, 20 mm) Submitted to JINST

G. Abbiendi^{*a*}, J. Bernhard^{*b*}, F. Betti^{*a,c*}, M. Bonanomi^{*d*}, C. M. Carloni Calame^{*e*}, M. Garattini^{*b,g*}, Y. Gavrikov^{*f*}, G. Hall^{*g*}, F. Iacoangeli^{*h*}, F. Ignatov^{*i*}, M. Incagli^{*j*}, V. Ivanchenko^{*b,k*}, F. Ligabue^{*j,l*}, T. O. James^{*g*}, U. Marconi^{*a*}, C. Matteuzzi^{*d*}, M. Passera^{*m*}, M. Pesaresi^{*g*}, F. Piccinini^{*e*}, R. N. Pilato^{*j,n*}, F. Pisani^{*a,b,c*}, A. Principe^{*a,c*}, W. Scandale^{*b*}, R. Tenchini^{*j*}, and G. Venanzoni^{*j*,1}

Theory

- QED NLO MC generator with full mass dependence has been developed and is currently under use (Pavia group) : M. Alacevich, et al arXiv:1811.06743.
- First results obtained for the NNLO box diagrams contributing to μ-e scattering in QED (Padova group): P. Mastrolia, *et al*, JHEP 1711 (2017) 198; S. Di Vita, *et al*. JHEP 1809 (2018) 016; M. Fael, arXiv:1808.08233; M. Fael, M. Passera arXiv:1901.03106; resummation (effects beyond fixed-order perturbation theory) and "massification" (massless matrix elements → differential cross section) (A. Signer, Y. Ulrich, PSI Group)

An unprecedented precision challenge for theory: a full NNLO MC generator for μ-e scattering (10⁻⁵ accuracy)
 → International efforts!

Status of the Collaboration and plans

- Collaboration is growing and interest from International groups from CERN, China (Shangai), Poland (Krakov), Russia (Novosibirsk), UK (Liverpool London), USA (Virginia) has been expressed.
- Results so far encouraging; we are part of "Physics Beyond Collider" process at CERN (<u>http://pbc.web.cern.ch/</u>).
- Lol submitted to SPSC in June 2019: a few- weeks pilot run expected in 2021 for the validation of the detector design and performances; 2-years data taking in 2022-2024 for final (per mille) accuracy on a_µ^{HLO}

Letter of Intent: The MUonE Project EUROPEAN ORGANIZATION FOR NUCLEAR RESEARC

(submitted to SPSC in June)

70 authors; 16 Institutions

Letter of Intent: The MUonE Project

MUonE Collaboration

Contents

1	Exec	cutive su	unmary	4
2	Intr	oduction	1	5
3	The	MUonE	l project	6
	3.1	A new	method to measure a_{μ}^{HLO}	6
	3.2	Precisio	on requested for the measurement	6
4	The	Hardwa	IFE	9
	4.1	The Tr	acking system	9
		4.1.1	Overview and general concept	9
		4.1.2	Silicon sensor choice: the CMS modules	11
	4.2	The E	ectromagnetic Calorimeter	14
		4.2.1	Position/angular measurement	15
		4.2.2	Energy resolution	16
	43	Mecha	nies	18

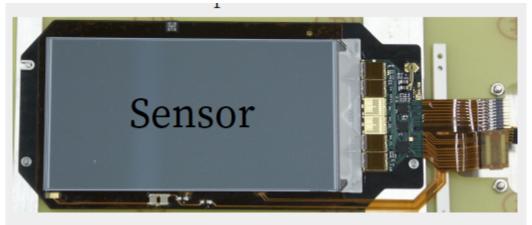
2			
5	The	Beam	
	5.1	Beam Parameters	20
	5.2	Beam Momentum Measurement	21
6	TPI	GGER and DAQ	23
0	6.1		23
	6.2	Stub logic .	23
		-	
	6.3		25
	6.4	DAQ	25
7	Sim	ulation	29
	7.1	Detector description in GEANT-4	29
	7.2	Generators	29
8		Tracking	31
	8.1	Tracking Algorithms	31
	8.2		32
	8.3	Simulation studies	33
9	Elas	tic events: the Analysis	34
	9.1	Determination of the incoming p _a	34
		9.1.1 Determination of the average beam energy	35
		9.1.2 Particle ID	36
10	Stra	tegy to fit the hadronic contribution	38
	10.1	Extraction of the hadronic contribution	38
	10.2	Strategy for the systematic uncertainties	40
		10.2.1 Normalization uncertainty	40
		10.2.2 Fit model	41
		10.2.3 Average beam energy scale	41
		10.2.4 Beam energy spread	42
		10.2.5 Multiple scattering	42
11	Terf	beams	43
			43
		2018 testbeam	45

POSSIBLE LOCATION AT EHN2

Conclusion

- Exciting times for the muon g-2!
- Alternative/competitive determinations of a_{μ}^{HLO} are essential.
- MUonE: a novel way (space-like region) to measure $a_{\mu}^{\ \ HLO}$ at per mille accuracy
- Many progress in the last years
- Growing interest from both experiment and theory community
- Lol submitted to SPSC in 2019; if approved a few-weeks pilot run in 2021 to assess the detector performance and validate the design; then 2 years run (2022-2024) for ultimate precision

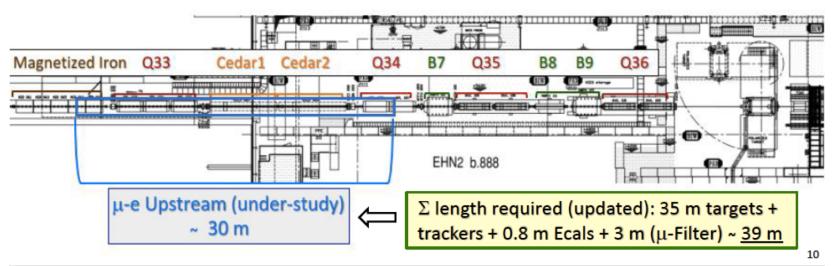
THE END



Spare

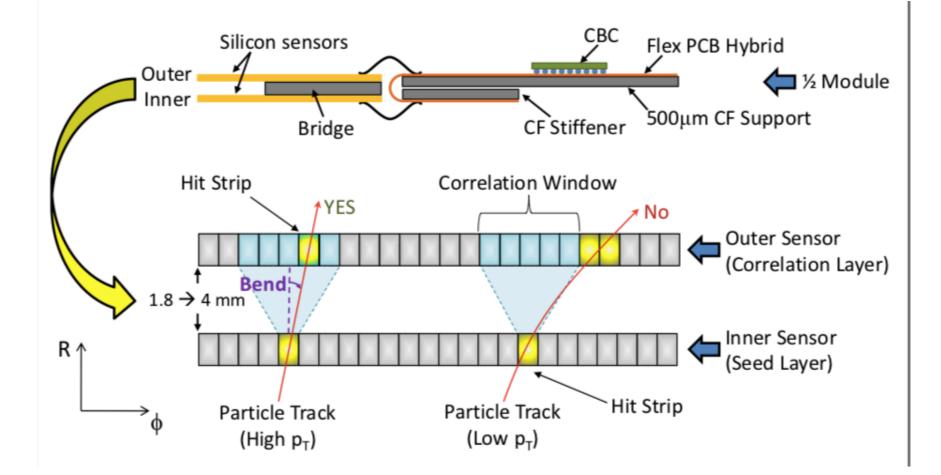
Silicon detectors survey Stefano Mersi - MUonE Mainz Wor

									<u> </u>
	ALICE Upg Inner	ALICE Upg Outer	CMS Upg 2S		CMS Upg PS	CMS Upg Pixel	2 × CMS Current	Mimosa26	LHCb VELO-pix
Technology	MAPS	MAPS	Hybrid strip	-	Hybrid strip/px	,	Hybrid strip	MAPS	Hybrid pixel
active x [cm]	27	21	10	10	10	33	10	1.06	4.246
active y [cm]	1.5	3	10	10	5	44.2	10	2.12	1.408
pixel size x [µm]	30	30	90	90	100	50	90	18.4	55
pixel size y [µm]	30	30	50000	90	1400	50	50000	18.4	55
σx [μm]	2	2	26	26	29	7	18	3.2	12
σy [μm]	2	2	14434	26	404	7	18	3.2	12
Material $[x/X_o]$	0.3%	0.8%	2.3%	4.5%	3.8%	2.0%	4.5%	0.10%	0.94%
Sensor mat. [x/X₀]	0.3%	0.8%	0.3%	0.6%	3.8%	2.0%	0.6%	0.10%	0.94%

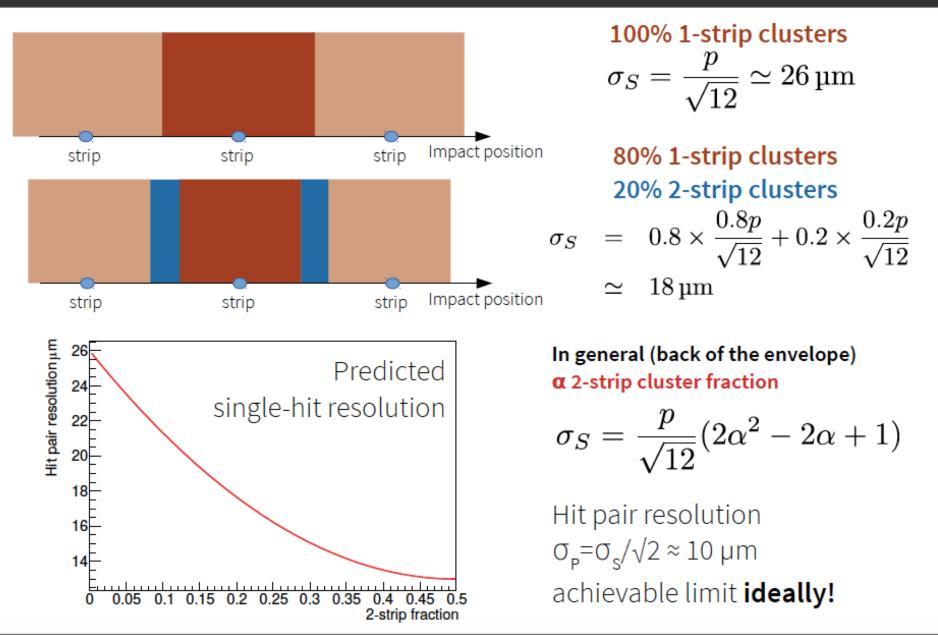


24

Between BSM and COMPASS


1/ μ -e setup upstream of present COMPASS experiment, i.e. within M2 beam-line

- More upstream of Entrance Area of EHN2 (Proposed by Johannes B. & Dipanwita B.)
- Pro: Could allow running μ -e/ μ -p_{Radius} in parallel.
- Questions: will require displacements (also removal) of some M2 components.
- Beam(s) compatibility for μ -e & μ -p_{Radius} : <u>Optic's wise looks OK</u> (see Add. Sl.14 from D.B.)



Beam Synergy/sharing at M2 under study (thanks to A. Magnon)

The concept of stub

Cluster size & resolution

Some numbers:

- 60 cm total Be target (2X₀) segmented in 40 stations with 1.5 cm target (0.03 X₀)
- ~40 m total detector length
- 10x10 cm² silicon detectors
- Resolve each µ,e track with uniform efficiency
- Best possible resolution on θμ (<5mrad),θe (<50 mrad)
- μ rate: ~60 MHz (peak) \rightarrow 15 MHz (averaged)
- μ separation: 17 ns (peak) \rightarrow 68 ns (averaged)
- Collect $4x10^{12}$ events with E_e>1GeV in ~2 years
- Scattering probability (E_e>1GeV): 1.7x10⁻⁴/cm
- Scattering event rate (E_e>1GeV): ~10 kHz per station (peak); 2.5 (avg)
- Scattering separation (E_e>1GeV): 100 µs per station