

Measurements of Higgs boson properties in leptonic final states at CMS

Olena Hlushchenko on behalf of CMS

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Higgs bosons:

$H{\rightarrow}\tau\tau$

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

$H{\rightarrow}\tau\tau$

- New 90% of backgrounds with data-driven methods
 - embedding:
 - DY, tt and VV with genuine au_h
 - fake factors:
 - tī, W+jets and QCD with jet $\rightarrow \tau$
- New Differential in p_T^{Higgs} STXS-1
- Machine learning used for categorization

$H \rightarrow \tau \tau$: Analysis components

Physics Institute III B

Measurements of Higgs boson properties in leptonic final states at CMS O. Hlushchenko | EPS-HEP 2019 | 11 July 2019

$H \rightarrow \tau \tau$ - Results

VH production

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

ZZ→ 4I

VH production

Measurements of Higgs boson properties in leptonic final states at CMS O. Hlushchenko | EPS-HEP 2019 | 11 July 2019

CMS

Observed

Other

60 E

VH production - Results

- Likelihood scan in the (κ_{V}, κ_{f}) parameter space:
 - VH 10% reduction in max extend of 95% CL
 - κ_v, κ_f: coupling strength modifiers to vector bosons and to fermions

HVV anomalous couplings

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

CMS-HIG-17-034

HVV anomalous couplings

- arXiv:1809.03590
- 2016 data analyzed and results combined with those from the $H \rightarrow ZZ \rightarrow 4I$ targeting HVV anomalous coupling
- Stringent constraints on *CP*-violating and *CP*-conserving parameters
 - Analysis is not sensitive to anomalous couplings in the decay
 - Optimized for VBF production (optimal for HVV, not Hgg or VH couplings)
 - Parameters to measure: individual coupling ratios

CMS-HIG-17-034

HVV anomalous couplings

<u>effective cross-section ratios:</u>

Summary

First differential in p_T measurement of $H \rightarrow \tau \tau$ cross-sections

 $H{\rightarrow}\tau\tau$ cross-sections measured for individual ZH and WH production mechanisms as well as for combination with ggH and VBF

Updated limits on anomalous couplings

One more thing...

- <u>Measurements of Higgs boson differential distributions and couplings at CMS</u> Matthias Schroeder - 12 Jul 2019, 17:00
- <u>Measurements of Higgs boson properties in hadronic final states at CMS</u> Leonardo Giannini - 11 Jul 2019, 10:15
- Higgs boson rare and exotic decays at CMS Fengwangdong Zhang -11 Jul 2019, 17:05
- Searches for additional neutral Higgs bosons at CMS Dermot Anthony Moran - 12 Jul 2019, 14:45

Appendix

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Analysis components

17

eμ (2017) CMS Simulation Preliminary								eτ _h (2017) CMS Simulation Prelimina					ninary											
						ggH	0.20	0.05	0.12	0.06	0.01	0.11	0.08	0.03		ggH	0.23	0.08	0.07	0.04	0.01	0.03	0.12	0.06
						۹dH کې	0.26	0.74	0.13	0.06	0.16	0.09	0.07	0.17	S	qqH	0.22	0.72	0.07	0.05	0.05	0.11	0.06	0.05
						nt clas	0.26	0.03	0.52	0.24	0.00	0.16	0.07	0.01	nt clas	ztt	0.20	0.06	0.66	0.18	0.01	0.10	0.08	0.09
						d evel d evel	0.07	0.03	0.11	0.45	0.03	0.18	0.05	0.04	d evel	qcd	0.03	0.02	0.03	0.21	0.03	0.10	0.05	0.15
Packground process	MiaId					n dicte	0.02	0.07	0.02	0.03	0.55	0.05	0.05	0.27	dicte	tt	0.01	0.04	0.02	0.07	0.76	0.26	0.01	0.02
$Z \rightarrow \tau \tau$	MISIG.	EMB	EMB	μ_h EMB	$\frac{T_h T_h}{\text{EMB}}$	D misc	0.07	0.02	0.05	0.11	0.02	0.24	0.07	0.05	l pre	misc	0.01	0.03	0.04	0.05	0.12	0.21	0.03	0.08
$\frac{Z}{W+jets}$		MC	F_F	F_F	F_F	. ₹ db	0.08	0.02	0.03	0.04	0.04	0.10	0.46	0.12	N	zll	0.22	0.02	0.07	0.14	0.00	0.04	0.55	0.12
QCD		CR	\mathbf{F}_F	\mathbf{F}_F	F_F	st	0.03	0.04	0.01	0.02	0.19	0.06	0.14	0.30		wj	0.07	0.02	0.04	0.26	0.02	0.15	0.10	0.43
$Z \rightarrow l l$	$jet \to \tau_h \\ l \to \tau_h$	MC	F_F MC	F_F MC	F_F MC		Hgg	Hpp	TIZ T	ded	=	misc	qp	st		Ľ	Нgg	Hpp	TIZ T	qcd	=	misc	zll	įw
T7T7 . • I ·*	$jet \rightarrow \tau_h$		\mathbf{F}_{F}	\mathbf{F}_{F}	\mathbf{F}_{F}			017)	Iri	CMS	ent cla Simul	ISS Intion	Drolin	inony			()	017)	Iru	CMS	ent cla Simu	ISS Intion	Drolim	inary
$VV + single t^*$	$l \to \tau_h$	MC	MC	MC	MC	σσH	0.27	0.08	0.08	0.07	0.01	0.05	0 11	0.08			ι _h ι _h (Ζ	017)			oinnai	allon		in lary
+ + *	$jet \to \tau_h$	MC	\mathbf{F}_F	\mathbf{F}_F	F_F	55.1		0.00	0.00	0.07	0.01	0.00	0.11	0.00	1	ggH	0.54		0.28	0.1	5	0.18	0	.12
				MO	I MC	I aah	0.21	0.72	0.07	0.06	0.06	0.12	0.05	0 06 1						1				
	$l \to \tau_h$		MC	MC] ass								0.00	ass									
	$l \rightarrow \tau_h$		MC	MC	MC	nt class	0.23	0.06	0.63	0.26	0.01	0.09	0.14	0.18	nt class	qqH	0.23		0.57	0.0	5	0.03	C	.05
	$l \rightarrow \tau_h$		MC	MC		devent class	0.23 0.02	0.06 0.01	0.63 0.02	0.26 0.17	0.01 0.02	0.09 0.06	0.14 0.04	0.18	l event class	qqH	0.23		0.57	0.0	5	0.03	0	1.05
	$l \rightarrow \tau_h$		MC	MC	MC	dicted event class	0.23 0.02 0.01	0.06 0.01 0.04	0.63 0.02 0.01	0.26 0.17 0.06	0.01 0.02 0.75	0.09 0.06 0.23	0.14 0.04 0.01	0.18 0.13 0.02	dicted event class	qqH ztt	0.23		0.57 0.10	0.0	2	0.03 0.16	0	ı.05 ı.13
	$l \rightarrow \tau_h$		MC	MC		N predicted event class of pob transmission of the pob transmission of	0.23 0.02 0.01 0.02	0.06 0.01 0.04 0.04	0.63 0.02 0.01 0.06	0.26 0.17 0.06 0.07	0.01 0.02 0.75 0.14	0.09 0.06 0.23 0.28	0.14 0.04 0.01 0.02	0.18 0.13 0.02 0.09	N predicted event class	qqH ztt qcd	0.23 0.11 0.07		0.57 0.10 0.01	0.0	5 2 0	0.03 0.16 0.48	0 0	.13
	$l \rightarrow \tau_h$		MC	MC	MC	NN predicted event class tt misc III	0.23 0.02 0.01 0.02 0.17	0.06 0.01 0.04 0.04 0.03	0.63 0.02 0.01 0.06 0.08	0.26 0.17 0.06 0.07 0.13	0.01 0.02 0.75 0.14 0.00	0.09 0.06 0.23 0.28 0.04	0.14 0.04 0.01 0.02 0.53	0.18 0.13 0.02 0.09 0.14	NN predicted event class	qqH ztt qcd	0.23 0.11 0.07		0.57 0.10 0.01	0.0 0.6 0.1	5 2 0	0.03 0.16 0.48	0).05 1.13 1.26
	$l \rightarrow \tau_h$		MC	MC		NN predicted event class the pop the second class the pop the second class the pop the second class the pop the second cl	0.23 0.02 0.01 0.02 0.17 0.07	0.06 0.01 0.04 0.04 0.03 0.02	0.63 0.02 0.01 0.06 0.08	0.26 0.17 0.06 0.07 0.13 0.19	0.01 0.02 0.75 0.14 0.00	0.09 0.06 0.23 0.28 0.04 0.13	0.14 0.04 0.01 0.02 0.53 0.10	0.18 0.13 0.02 0.09 0.14 0.31	NN predicted event class	qqH ztt qcd nisc	0.23 0.11 0.07 0.06		0.57 0.10 0.01 0.04	0.0 0.6 0.1 0.0	5 2 0 9	0.03 0.16 0.48 0.15	0 0).05 1.13 1.26 .45
	$l \rightarrow \tau_h$		MC	MC	MIC	NN bredicted event class tt unisc Ilz wj	0.23 0.02 0.01 0.02 0.17 0.07 H _{bb}	0.06 0.01 0.04 0.04 0.03 0.02 Hbb	0.63 0.02 0.01 0.06 0.08 0.06	0.26 0.17 0.06 0.07 0.13 0.19	0.01 0.02 0.75 0.14 0.00 0.02	0.09 0.06 0.23 0.28 0.04 0.13	0.14 0.04 0.01 0.02 0.53 0.10	0.18 0.13 0.02 0.09 0.14 0.31	NN predicted event class	qcd nisc	0.23 0.11 0.07 0.06		0.57 0.10 0.01 0.04	0.0 0.6 0.1 0.0	5 2 0 9	0.03 0.16 0.48 0.15	0 0	0.05 1.13 1.26

Confusion matrices for the NN

 NN architecture and training Softmax output can be interpreted as Bayesian 	Training One individual NN for each decay channel & year (→ 4x2) Processes weighted to equal yield for training 2 fold training to keep full dataset available for analysis Batch size: 100 Validation split: 25% Early stopping: after 50 epochs						
 "probability" in the sense of: "Event X is likely to belong to class B, according to its kinematic properties" Backgrounds with small yields are merged Inputs: well described only (saturated goodness of fit 1D and 2D test) 	NN architecture Fully connected feed forward Activation function: hyperbolic tangent 2 hidden layers with 200 nodes respectively Softmax output Cross entropy as loss function Optimizer algorithm: Adam (learning rate 10-4) Weight initialization: Glorot (uniform) Regularization: Dropout layer after each hidden layer (30% probability), L2 regularization						
		Cla	asses/Categor	ies per final st	ate		
	Process	еµ	$e\tau_h$	$\mu \tau_{\rm h}$	$\tau_{\rm h}\tau_{\rm h}$		
	$gg \to H$	ggH (0.20)	ggH (0.23)	ggH (0.27)	ggH (0.54)		
Softmax	VBF	qqH (0.74)	qqH (0.72)	qqH (0.72)	qqH (0.57)		
	$Z \to \tau \tau$	ztt (0.52)	ztt (0.66)	ztt (0.63)	ztt (0.62)		
A.U. 15	QCD	qcd (0.45)	qcd (0.21)	qcd (0.17)	qcd (0.48)		

	Classes/Categories per final state					
Process	eμ	$e\tau_h$	$\mu \tau_{\rm h}$	$ au_{ m h} au_{ m h}$		
$gg \to H$	ggH (0.20)	ggH (0.23)	ggH (0.27)	ggH (0.54)		
VBF	qqH (0.74)	qqH (0.72)	qqH (0.72)	qqH (0.57)		
$Z \to \tau \tau$	ztt (0.52)	ztt (0.66)	ztt (0.63)	ztt (0.62)		
QCD	qcd (0.45)	qcd (0.21)	qcd (0.17)	qcd (0.48)		
tī	tt (0.55)	tt (0.79)	tt (0.75)			
$Z \to \ell \ell$	misc (0.24)	zll (0.55)	zll (0.53)	misc (0.45)		
W+jets		wj (0.43)	wj (0.51)			
Diboson	db (0.46)	misc (0.21)	misc(0.28)			
Single t	st (0.30)					

Due to low statistics/ sensitivity some **subcategories** have been merged and several μ -values are combined for the fit.

- High $p_{T}^{H}\mu$ -values of = 1 Jet in gluon fusion category
- All $p_T^H \mu$ -values of ≥ 2 Jet in gluon fusion category
- All µ-values of VBF topology

9 µ values measured

Measurements of Higgs boson properties in leptonic final states at CMS O. Hlushchenko | EPS-HEP 2019 | 11 July 2019

Fake factor method

F

- tt, W+jets, QCD processes with jet->tau
- Fake factor for each background component:

$$FF_i = \frac{n}{n}$$
 isolated $\frac{1}{n}$ anti isolated

arXiv:1903.01216

 $Z \rightarrow \mu \mu$ Cleaning

Remove energy

deposits from muons.

 $Z \rightarrow \mu \mu$ Selection

 $\mathbf{Z} \rightarrow \tau \tau$ Hybrid

 $\rightarrow \tau \tau$ Simulation

Simulate τ leptons

with same kinematic

properties as muons.

Embedding

- High statistics
- Better modeling out of the box:
 - MET
 - underlying event
 - jets etc.
- Orthogonal uncertainty model

CMS-HIG-18-007 Search for the associated VH production via Higgs boson decays to T leptons

35.9 fb⁻¹ (2016, 13 TeV

- FR is applied to leptons associated to H decay as fn of p_T
- Estimated from anti-isolated (semileptonic) or SS (for hadronic) data sample
 - contribution of prompt leptons estimated from MC are subtracted
- jet->µ
 - using Z(ee)+j •
 - Denominator: Events passing baseline
 - Numerator: baseline & Medium muon ID and Iso < 0.15
- jet-> e/т
 - using $Z(\mu\mu)+j$
 - baseline selecting Z->µµ
 - e:
- Denominator: pT(e) > 10 GeV, |ne| < 2.5
- Numerator: MVA WP80 ID and Iso < 0.1
- T:
- Denominator: VL anti-e, L anti-µ, VL MVA T ID
- Numerator: T passes Medium/Tight/VTight MVA ID

Measurements of Higgs boson properties in leptonic final states at CMS O. Hlushchenko | EPS-HEP 2019 | 11 July 2019

Physics

Post-fit mass distributions

ZH

m_{rr} (GeV)

WH

CMS-HIG-17-034

HVV anomalous couplings

CP properties in Hgg have small effect on jet correlation: **taken into account explicitly in CP fit** (fa3) with f_{a3}^{ggH} floated

 $\begin{array}{l} A(\mathrm{Hgg}) \sim a_2^{gg} f_{\mu\nu}^{*(1)} f^{*(2)\mu\nu} + a_3^{gg} f_{\mu\nu}^{*(1)} f^{*(2)\mu\nu} \\ \mathrm{scalar} \; (0+) \qquad \mathrm{pseudoscalar} \; (0-) \end{array}$

- assumption that only the t quark contributes to the loop
- general parameterization

CMS PAS HIG-18-032

Optimal observables for HVV anomalous couplings

MELA package (Matrix Element Likelihood Approach):

- "Build discriminant for process A vs process B from ME bases probabilities"
- Using full kinematic
- Discriminant: ratio of probabilities
 - Distinguish contributions: SM, BSM, interference

Results

2016:

68[95]% CL

Parameter	Observed/ (10^{-3})	Expected / (10^{-3})
$f_{a3}\cos(\phi_{a3})$	$0.00^{+0.93}_{-0.43} \ [-1000, 1000]$	$0.00\pm0.28\;[-3.60,3.60]$
$f_{a2}\cos(\phi_{a2})$	$0.0^{+1.2}_{-0.4}$ $[-1000, 1000]$	$0.0^{+2.0}_{-1.8} \left[-10.0, 8.0 ight]$
$f_{\Lambda 1} \cos(\phi_{\Lambda 1})$	$0.00^{+0.39}_{-0.10} \ [-0.4, 1.8]$	$0.00^{+0.75}_{-0.16} \ [-0.8, 3.6]$
$f_{\Lambda 1}^{Z\gamma}\cos(\phi_{\Lambda 1}^{Z\gamma})$	$0.0^{+1.2}_{-1.3}$ [-7.4, 5.6]	$0.0^{+3.0}_{-4.5} \left[-19, 12 ight]$

Best fit	μ _ν	μ_{F}
for f _{a3} =0	0.55 ± 0.48	1.03+0.45
for f _{a2} =0	0.72 ^{+0.48} -0.46	0.89 ^{+0.43} -0.37
for f _{A1} =0	0.92 ^{+0.44} -0.45	0.82+0.46
for $f_{\Lambda 1}^{Z\gamma}=0$	0.94 ^{+0.48} -0.46	0.79 ± 0.46

Combination:

68[95]% (CL
-----------	----

Parameter	Observed / (10^{-3})	Expected / (10^{-3})
$f_{a3}\cos(\phi_{a3})$	$0.00 \pm 0.27 \ [-92, 14]$	$0.00 \pm 0.23 \; [-1.2, 1.2]$
$f_{a2}\cos(\phi_{a2})$	$0.08^{+1.04}_{-0.21} \ [-1.1, 3.4]$	$0.0^{+1.3}_{-1.1}$ [-4.0, 4.2]
$f_{\Lambda 1} \cos(\phi_{\Lambda 1})$	$0.00^{+0.53}_{-0.09} \ [-0.4, 1.8]$	$0.00^{+0.48}_{-0.12} \ [-0.5, 1.7]$
$f_{\Lambda 1}^{Z\gamma}\cos(\phi_{\Lambda 1}^{Z\gamma})$	$0.0^{+1.1}_{-1.3}$ [-6.5, 5.7]	$0.0^{+2.6}_{-3.6} \left[-11, 8.0 ight]$

27

Measurements of Higgs boson properties in leptonic final states at CMS O. Hlushchenko | EPS-HEP 2019 | 11 July 2019

Optimal observables for HVV anomalous

H→µµ - Results

- Run2 expected upper limit improved >3x compared to New
- BDT categorization used to improve signal sensitivity New

Transformed BDT

CMS-HIG-17-019

arXiv:1807.06325v2 [*hep-ex*]

-1.0

H→µµ - Results

- best fit signal strength: $\hat{\mu}_{125} = 0.7 \pm 1.0 (\text{ stat })^{+0.2}_{-0.1} (\text{ syst })$

Combination

 $\hat{\mu}_{125}^{comb} = 1.0 \pm 1.0$ (stat) ± 0.1(syst)

• About 400 fb-1 estimated for 3σ

