

Probing light Yukawa couplings in Higgs pair production

Lina Alasfar

Humboldt-Universität zu Berlin

In collaboration with Roberto Corral Lopez Universidad de Granada and Ramona Gröber Humboldt-Universităt zu Berlin

The flavour puzzle of the SM !

- The flavour sector is the least understood of the SM, with 10 = 6 + 3 + 1 free parameters in the guark sector.
- Looking at the quark masses, we observe an *unnatural hierarchy* between their generations demanding an explanation.

The flavour puzzle of the SM !

- The flavour sector is the least understood of the SM, with 10 = 6 + 3 + 1 free parameters in the guark sector.
- Looking at the quark masses, we observe an *unnatural hierarchy* between their generations demanding an explanation.

We should measure the light Yukawa couplings !

Currents bound of Yukawa couplings

• We define the scaling factor of a quark flavour f Yukawa coupling κ_f as:

$$\kappa_f = \frac{g_{hf\bar{f}}}{g_{hf\bar{f}}^{\rm SM}}.$$

- The top and beauty Yukawa couplings are strongly constrained $|\kappa_t| \sim |\kappa_b| \sim 1$ (most recent CMS-TOP-17-004 $\kappa_t < 1.67$, @ 95% CL).
- We are concerned with the light Yukawa couplings (2nd and 1st generations), the current bounds are (model-dependent, global fit):

```
|\kappa_d| < 1270, \ |\kappa_u| < 1150;
```

```
|\kappa_s| < 53, \ |\kappa_c| < 5.
```

Obtained by allowing the couplings to be scaled one at a time E Yu,16

Formulation of the problem

• Light Yukawa couplings are poorly constrained, as the single Higgs production $gg \rightarrow h$ is only sensitive by

 $\sim \kappa_q \, m_q^2 / m_h^2 \ln^2(m_h/m_q),$

to light quarks contributions.

- Moreover, we need an extra particle/ jet in order to construct distributions for exclusive bounds.
- Using exotic Higgs decays (e.g. $h \to M \gamma$, $M = \rho, \omega, \phi, J/\psi$), as a probe for Light Yukawa couplings has been proposed by G. T. Bodwin *et al.* '13.
- The channel $q\bar{q} \rightarrow h \ q = c, s, u, d$ remains subdominant $\sim \mathcal{O}(10^1 10^2)$ fb compared to the beauty quark channel ~ 2 pb.

New Higgs fermion coupling from linear SMEFT

We have the Lagrangian :

$$\mathcal{L} \supset -Y_u \bar{Q}_L \Phi u_R - Y_d \bar{Q}_L \tilde{\Phi} d_R + h.c. + \frac{\Phi^{\dagger} \Phi}{\Lambda^2} \left(c_u \bar{Q}_L \Phi u_R + c_d \bar{Q}_L \tilde{\Phi} d_R + h.c \right)$$

SMEFT Yukawa

$$g_{hf\bar{f}} = g_{hf\bar{f}}^{\rm SM} - \frac{\xi}{\sqrt{2}} c_f = \kappa_f \, g_{hf\bar{f}}^{SM}.$$

Linear $hhf\bar{f}$ coupling

$$g_{hhf\bar{f}} = -3 g_{hf\bar{f}}^{\rm SM} \frac{(1 - \kappa_f)}{v}$$

We identify :

$$g_{hf\bar{f}}^{\rm SM} = \frac{m_f}{v}, \ \xi = \frac{v^2}{\Lambda^2},$$

and the scaling:

$$\kappa_f = \left(1 - \frac{c_f}{\sqrt{2}} \,\xi \, \frac{v}{m_f}\right).$$

h

h

The SM double Higgs production

Gluon gluon fusion (ggF), is the dominant channel for the SM double Higgs production at the LHC.

000000

The ggF hh production with modified Yukawa

The p_T distributions are not very sensitive to small changes in κ_c , unlike the $hj \in$

Bishara et al. '16

Lina Alasfar 11/07/2019

The channel $q\bar{q} \rightarrow hh$

Remarks

• We use a benchmark point in the light Yukawa scaling space where :

 $|\kappa_d| = 889.36, \ |\kappa_u| = 1878.65;$

 $|\kappa_s| = 44, \ |\kappa_c| = 3.28.$

This corresponds to setting all the light Yukawa couplings equal to the SM beauty quark Yukawa coupling in the MS scheme, i.e.

$$g_{hq\bar{q}} = g_{hb\bar{b}}^{SM}, \quad \forall q = c, s, u, d.$$

• Since FCNC are strongly constrained, we assumed that the dim 6 operator is flavour diagonal.

Distribution for $q\bar{q} \rightarrow hh$ $pp \to hh~(q\bar{q}~{\rm A})~\sqrt{s} = 14\,{\rm TeV}\,(g_{hq\bar{q}} = g_{hb\bar{b}}^{SM})$ ---------------NLO 1.0 -LO 0.8 $\frac{d\sigma}{dM_{hh}}$ [fb/GeV] LA, Corral Lopez, Gröber preliminary. 0.2 0.0 1.4 K_{NLO} 1.2 1.00.8 300 400 500 $\begin{array}{c} 600 & 700 \\ M_{hh} \; [{\rm GeV}] \end{array}$ 800 900 1000

Effects on the decay partial widths

The branching ratios (BR) are changed significantly with κ_f scaling. The BR's for different final states were calculated via a modified version of HDECAY A. Djouadi et al. '98

The following is the 'theoretical' and ' expected' event yields after cuts for the HL-LHC @ 14 TeV, and final state $hh \rightarrow b\bar{b}\gamma\gamma$ following the analysis of A. Azatov et al. '15 :

	σ_{NLO} [fb]	$\mathcal{B}(hh \rightarrow b\bar{b}\gamma\gamma)$	N_{Th}	N_{Expec}
SM	$34.5^{+10.35}_{-8.97}$	2.7×10^{-3}	292	13
$(g_{hq\bar{q}}=g^{SM}_{hb\bar{b}})$	$328.0_{-49.21}^{+65.60}$	1.7×10^{-4}	167	9

Statistical analysis and bounds on μ

The likelihood profile (ratio) method was use in order to estimate the 68% and 95% CL expected limits on the signal strength μ .

Bounds on the 1st generation Yukawa scaling

Using the above analysis we get the new bounds of 1st gen. Yukawa scaling:

The problem with the 2nd generation

We were unable to construct bounds using μ_b . Possible, even strong bounds could be made via μ_c .

Mistagging of b-jets as a probe for μ_c

$$\hat{\mu} = \frac{\sigma_{hh} \, \mathcal{B}_b \, \epsilon_{Rec} \, \epsilon_{b1} \, \epsilon_{b2} + \sigma_{hh} \, \mathcal{B}_c \, \epsilon_{Rec} \, \epsilon_{c2} \, \epsilon_{c2}}{\sigma_{hh}^{SM} \, \mathcal{B}_b^{SM} \, \epsilon_{Rec} \, \epsilon_{b1} \, \epsilon_{b2}}$$

see : D. Kim et al. '16 & G. Perez et al.('15 & '16)

16

Profiling over μ_b we obtain the 95 % CL upper bound on μ_c :

 $\mu_c(\text{up}) = 38.32 \,{}^{+7.13}_{-34.92}$

Mistagging of b-jets as a probe for μ_c

$$\hat{\mu} = \frac{\sigma_{hh} \, \mathcal{B}_b \, \epsilon_{Rec} \, \epsilon_{b1} \, \epsilon_{b2} + \sigma_{hh} \, \mathcal{B}_c \, \epsilon_{Rec} \, \epsilon_{c2} \, \epsilon_{c2}}{\sigma_{hh}^{SM} \, \mathcal{B}_b^{SM} \, \epsilon_{Rec} \, \epsilon_{b1} \, \epsilon_{b2}}$$

see : D. Kim et al. '16 & G. Perez et al.('15 & '16)

17

Profiling over μ_b we obtain the 95 % CL upper bound on μ_c :

 $\mu_c(\text{up}) = 38.32 \,{}^{+7.13}_{-34.92}$

c-tagging working points

See : ATLAS 1501.01325, ATLAS 1407.0608, ATL-PHYS-PUB-2015 and CERN-LHCC-2010-013. ATLAS-TDR-19

Outlook

• The hh production at the HL-LHC has an interesting potential for setting much tighter bounds on the light-Yukawa couplings;

```
|\kappa_d| < 790, \ |\kappa_u| < 920;
```

```
|\kappa_c| < 1.4, \ |\kappa_s| <???;
```

• These bounds are comparable to the expected model-dependent global fit J. De Blas et al'19. :

```
|\kappa_u| < 570, |\kappa_d| < 270, |\kappa_s| < 13, |\kappa_c| < 1.2.
```

• The next step, is to consider non-linear EFT, FCNC and specific models.

Backup Slides

Examples of UV complete models

NLO corrections to $q\bar{q} \rightarrow hh$

Next-to-leading order (NLO) QCD corrections to the s-channel $q\bar{q} \rightarrow hh$ has been calculated using the same corrections for $b\bar{b} \rightarrow h$ D. Dicus et al., C.

Balazs et al., M. Spira and T. Plehn et al..

NLO corrections to $q\bar{q} \rightarrow hh$

Next-to-leading order (NLO) QCD corrections to the s-channel $q\bar{q} \rightarrow hh$ has been calculated using the same corrections for $b\bar{b} \rightarrow h$ D. Dicus et al., C.

Balazs et al., M. Spira and T. Plehn et al..

$$\sigma(q\bar{q} \to h) = \sigma_{LO} + \Delta \sigma_{q\bar{q}} + \Delta \sigma_{qg}$$

$$\Delta \sigma_{q\bar{q}} = \frac{\alpha_s(\mu_R)}{\pi} \int_{\tau_H}^1 d\tau \sum_q \frac{d\mathcal{L}^{q\bar{q}}}{d\tau} \sigma_0 \int_{\tau}^1 dz \,\,\omega_{q\bar{q}}(z)$$

$$\Delta \sigma_{qg} = \frac{\alpha_s(\mu_R)}{\pi} \int_{\tau_H}^1 d\tau \sum_{q,\bar{q}} \frac{d\mathcal{L}^{bg}}{d\tau} \sigma_0 \int_{\tau}^1 dz \,\,\omega_{qg}(z)$$

with $z = \tau_H / \tau$, $\tau_H = (2 m_h)^2 / s$.

NLO corrections to $q\bar{q} \rightarrow hh$

Lina Alasfar 11/07/2019

ROOT was used to carry out the analysis of generated events, along with FASTJET, the Mass-drop tagger M. Dasgupta *et al.* 13' for identifying b-jets was applied, and cuts as in A. Azatov *et al.* 15'.

• Select within LHC reconstruction requirements:

 $p_T(\gamma/j) > 25 \,\text{GeV}, \quad |\eta(\gamma/j)| < 2.5;$

• Veto events with hard leptons :

 $p_T(\ell) > 20 \,\text{GeV}, \quad |\eta(\ell)| < 2.5;$

• Select only *hardest* b-tagged jets, and photons

 $p_{T>}(b/\gamma) > 50 \,\text{GeV}, \quad p_{T<}(b/\gamma) > 30 \,\text{GeV};$

• Ensure well- separated b jets and photons:

 $\Delta R(b,b) < 2, \quad \Delta R(\gamma,\gamma) < 2, \quad \Delta R(b,\gamma) > 1.5$

Where ΔR is the jet-radius, and it is given by :

 $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$

• Higgs mass window :

 $105 < m_{b\bar{b}} < 145 \,\text{GeV}, \quad 123 < m_{\gamma\gamma} < 130 \,\text{GeV}$

Analysis of $pp \rightarrow hh \rightarrow b\bar{b}\gamma\gamma$: efficiency estimation

Analysis of $pp \rightarrow hh \rightarrow b\bar{b}\gamma\gamma$:: efficiency estimation

The efficiency can be parametrised by the following relation :

VOR

 ϵ_{qq} 0.050 0.049 0.053

0.0340.0370.039

	vai
	κ_u
$\epsilon = \frac{\sigma_{gg} \epsilon_{gg} + \sigma_{q\bar{q}} \epsilon_{qq}}{\sigma_{gg} + \sigma_{q\bar{q}}}; \ \epsilon_{gg} = 0.044$	К _d Кт. & К.d
$O_{gg} + O_{qq}$	$\frac{\kappa_u \mathbf{c} \kappa_a}{\kappa_c}$
	κ_s
	$\kappa_c \& \kappa_s$

HU Physik

29

Analysis of $pp \rightarrow hh \rightarrow b\bar{b}\gamma\gamma$:: efficiency estimation

Bounds on the 1st generation Yukawa scaling, More final states

SEE ATL-PHYS-PUB-2018-05

 $|\kappa_d| < 358, \ |\kappa_u| < 606;$

Mistagging of b-jets as a probe for μ_c

We could use the ideas developed by D. Kim *et al.* '16 & G. Perez *et al.*('15 & '16) in order to probe the c-channels via the relation :

$$\hat{\mu} = \frac{\sigma_{hh} \, \mathcal{B}_b \, \epsilon_{Rec} \, \epsilon_{b1} \, \epsilon_{b2} + \sigma_{hh} \, \mathcal{B}_c \, \epsilon_{Rec} \, \epsilon_{c2} \, \epsilon_{c2}}{\sigma_{hh}^{SM} \, \mathcal{B}_b^{SM} \, \epsilon_{Rec} \, \epsilon_{b1} \, \epsilon_{b2}}$$

This simplifies to :

$$\hat{\mu} = \mu_b + 0.05 \cdot \epsilon_{c/b} \cdot \mu_c.$$

for $\mathcal{B}_c^{SM}/\mathcal{B}_b^{SM} \approx 0.05$ And the ratio of tagging efficiency :

$$\epsilon_{c/b} = \frac{\epsilon_{c1}\epsilon_{c2}}{\epsilon_{b1}\epsilon_{b2}}$$

For b-tagging, we have for example $\epsilon_b=70\%$ and $\epsilon_c\,{\sim}\,20\%$

c-tagging working points

Reconsider the previous relation, with c-tagging in mind:

$$\hat{\mu} = \frac{\sigma_{hh} \mathcal{B}_b \epsilon_{Rec} \epsilon_{b1} \epsilon_{b2} + \sigma_{hh} \mathcal{B}_c \epsilon_{Rec} \epsilon_{c2} \epsilon_{c2}}{\sigma_{hh}^{SM} \mathcal{B}_b^{SM} \epsilon_{Rec} \epsilon_{b1} \epsilon_{b2} + \sigma_{hh}^{SM} \mathcal{B}_c^{SM} \epsilon_{Rec} \epsilon_{c1} \epsilon_{c2}}$$

This simplifies to:

$$\hat{\mu} = \left(\mu_b + 0.05 \,\epsilon_{c/b} \mu_c\right) / \left(1 + 0.05 \,\epsilon_{c/b}\right)$$

We used the c-tagging efficiency obtained at ATLAS run I (as c-tagging I), and the expected Insertable B-Layer (IBL) subdetector c-tagging efficiency (as c-tagging II and III).

See : arXiv:1501.01325, arXiv:1407.0608, ATL-PHYS-PUB-2015 and CERN-LHCC-2010-013. ATLAS-TDR-19

References

- G. Cowan, K. Cranmer, E. Gross and O. Vitells, "Asymptotic formulae for likelihood-based tests of new physics," Eur. Phys. J. C **71** (2011) 1554
- F. Yu, arXiv:1609.06592 [hep-ph].
- ATLAS Collaboration, "Measurement prospects of the pair production and self-coupling of the Higgs boson with the ATLAS experiment at the HL-LHC", ATL-PHYS-PUB-2018-053.
- A. Azatov, R. Contino, G. Panico and M. Son, "Effective field theory analysis of double Higgs boson production via gluon fusion," Phys. Rev. D 92 (2015) no.3, 035001 [arXiv:1502.00539 [hep-ph]].
- M. Dasgupta, A. Fregoso, S. Marzani and G. P. Salam, "Towards an understanding of jet substructure," JHEP **1309** (2013) 029 [arXiv:1307.0007 [hep-ph]].
- M. Spira, "Higgs Boson Production and Decay at Hadron Colliders," Prog. Part. Nucl. Phys. **95** (2017) 98 [arXiv:1612.07651 [hep-ph]].

References

- A. Djouadi, J. Kalinowski, M. Muehlleitner and M. Spira, "HDECAY: Twenty₊₊ years after," Comput. Phys. Commun. **238** (2019) 214 [arXiv:1801.09506 [hep-ph]].
- T. Plehn, M. Spira and P. M. Zerwas, "Pair production of neutral Higgs particles in gluon-gluon collisions," Nucl. Phys. B **479** (1996) 46 Erratum: [Nucl. Phys. B **531** (1998) 655] [hep-ph/9603205].
- G. Perez, Y. Soreq, E. Stamou and K. Tobioka, "Prospects for measuring the Higgs boson coupling to light quarks," Phys. Rev. D **93** (2016) no.1, 013001 [arXiv:1505.06689 [hep-ph]].
- G. Perez, Y. Soreq, E. Stamou and K. Tobioka, "Constraining the charm Yukawa and Higgs-quark coupling universality," Phys. Rev. D **92** (2015) no.3, 033016 doi:10.1103/PhysRevD.92.033016 [arXiv:1503.00290 [hep-ph]].
- D. Kim and M. Park, "Enhancement of new physics signal sensitivity with mistagged charm quarks," Phys. Lett. B **758** (2016) 190 doi:10.1016/j.physletb.2016.05.008 [arXiv:1507.03990 [hep-ph]].

References

- M. Capeans, G. Darbo, K. Einsweiller, M. Elsing, T. Flick, M. Garcia-Sciveres, C. Gemme, H. Pernegger, O. Rohne, and R. Vuillermet, ATLAS Insertable B-Layer Technical Design Report, Tech. Rep. CERN-LHCC-2010-013. ATLAS-TDR-19 (CERN, Geneva, 2010).
- Performance and Calibration of the JetFitterCharm Algorithm for c-Jet Identification, Tech. Rep. ATL-PHYS-PUB-2015- 001 (CERN, Geneva, 2015).
- G. Aad et al. (ATLAS Collaboration), Phys.Rev. D90, 052008 (2014), arXiv:1407.0608 [hep-ex].
- G. Aad et al. (ATLAS Collaboration), (2015), arXiv:1501.01325 [hep-ex].
- S. Heinemeyer et al. (LHC Higgs Cross Section Working Group), (2013), 10.5170/CERN-2013-004, arXiv:1307.1347 [hep-ph].