

Measurements of the Higgs boson properties in hadronic final states at CMS

Leonardo Giannini on behalf of the CMS collaboration

SNS, INFN Pisa

EPS-HEP - 10-17 July 2019, Ghent

Hadronic final states \rightarrow Higgs to $b\overline{b}$

- $H \rightarrow q\bar{q}$ via Yukawa coupling
- $H \rightarrow b\overline{b}$ has a large branching ratio (~58%) but also very large backgrounds at hadron colliders
 - After a long experimental history \rightarrow finally observed in 2018
- Ongoing efforts to search for $H \rightarrow c\bar{c}$ which has non-negligible branching ratio (~3%), but experimentally much more difficult
- $H \rightarrow b\overline{b}$:
 - VH production mode is the most sensitive:
 - Testing at the same time $H(b\overline{b})$ Yukawa and VH vertex
 - large branching ratio allows to probe specific phase space regions
 - ttH production
 - High p_{τ} tail of the Higgs spectrum

• Focus of this talk: $H \rightarrow b\overline{b}$ results with 2017 data

11/07/19

PRL 121, 121801 (2018)

VH, $H \rightarrow b\overline{b}$

• "Old" strategy:

- 3 channels 0/1/2 leptons targeting Z(vv), W(lv) Z(II), leptons and MET used also at trigger level
- Vector boson + Vector boson boost (~100 GeV) reduce greatly the background
- Jet b-tagging + b jet energy regression fundamental tools to select higgs candidates and improve the mass resolution
- Multivariate analysis to isolate signal from V+(HF) jets and Top backgrounds

NEW

- Deep Neural Networks (DNNs) for jet b-tagging, improved b-jet energy regression, S vs B classifiers
- Kinematic fit in the 2 leptons channel

Higgs mass resolution

- 15% baseline dijet mass resolution
- DNN b jet regression (0/1/2 leptons):
 - Trained on b jets from tt simulation
 - Recovers b jet missing energy ($B \rightarrow I\nu$)
 - Uses jet shape/lepton/SV information → works as dedicated b jet calibration:

~10% improvement in jet resolution

- ${\sim}20\%$ relative resolution improvement in analysis phase space
- Improvement verified in data in Z+ b-jets control region (+data/MC scale factor)
- Kinematic fit (2 leptons):
 - Lepton and jet 4-vector components adjusted within the experimental resolution with 2 constraints: Z mass, true MET = 0
 - Dijet mass resolution <10 GeV in the most sensitive category

11/07/19

Multivariate analysis

Input features

- Multivariate discriminator per channel
 - DNN introduced with 2017 data
 - Makes use of the most discriminating variables (dijet mass, V p_T , $\Delta \phi$ (VH), ...)
 - About 10-15 variables choice based on 2016 analysis
- Background estimate → MC templates – normalization from data:
 - Need to isolate background sources → dedicated tt̄, V+jets, V+HF jets control regions
 - DNN used also to categorize events in the V+HF control regions → better control of V+bb background

Results

2017- 41.5 fb⁻¹

$\mu = 1.08^{-0.26}_{+0.26} \text{ (stat)}^{+0.23}_{-0.20} \text{ (syst)}$ observed (expected) significance of 3.3 (3.1) σ

- 2017 data \rightarrow improved sensitivity wrt to 2016 analysis at 13 TeV
- Uncertainty still dominated by statistical contribution, but e.g. the MC statistical uncertainty is not negligible
- Combination with 2016+Run1 results
 - 4.8(4.9) σ for VH(bb) only
 - Adding ttH(bb) we reached the observation 5.6 (5.5) $\sigma \rightarrow next \ topic$

Channels combined

11/07/19

Significance (σ)					
Data set	Expected	Observed	Signal strength		
2017					
0-lepton	1.9	1.3	0.73 ± 0.65		
1-lepton	1.8	2.6	1.32 ± 0.55		
2-lepton	1.9	1.9	1.05 ± 0.59		
Combined	3.1	3.3	1.08 ± 0.34		
Run 2	4.2	4.4	1.06 ± 0.26		
Run 1 + Run 2	4.9	4.8	1.01 ± 0.23		

More in C. Martin Perez's talk

$t\bar{t}H,\;H\rightarrow\;b\overline{b}$

New result! 2017 data

- The ttH production mode allows to probe directly the **Higgs-top Yukawa**
- ttH(bb) is an important channel in the ttH combined measurement
- 3 final states considered defined by the top decays:
 - Dileptonic
 - Semileptonic
 - Fully-Hadronic
- Sensitivity driven by semileptonic + dileptonic final states

- tt+jets backgrounds everywhere
- QCD multijet production in the fully hadronic channel
- Ambiguity in Higgs reconstruction due to combinatorics

$t\bar{t}H, H \rightarrow b\bar{b}$

Fully hadronic

multijet triggers: 6 jets + 1 b-tag, 6 jets + 2 b-tags, 4 jets + 3 b-tags

Dijet mass compatible with W for at least a pair of non b-tagged jet

"quark vs gluon likelihood" (QGL) discriminator for all non b-tagged jets and average $\Delta\eta$ selection between jets to reduce the QCD background

Analysis categories: (7-8-9 jets) x (3, 4+ b-tags)

QCD multijet backgrounds estimated from data using #b-tags and QGL of jets

Semileptonic

Single lepton or single lepton +HT trigger

MET

1 isolated lepton

Events categorization: (4, 5, 6+ jets) x (3+ b-tags)

L. Giannini - EPS-HEP 2019

Dileptonic

Single lepton or dilepton trigger

MET

2 opposite charge isolated leptons

Outside of Z mass window in case of same flavour

Analysis categories: (3 jets, >3 jets) x (2,3,4+ b-tags*)

11/07/19

Multivariate analysis

- Different techniques used to build discriminators:
 - Fully hadronic:
 - ttH(bb) vs ttbb with Matrix Element Method (MEM)
 - Semileptonic:
 - Multi-category DNN
 - Dileptonic:
 - Boosted decision tree (BDT)

Matrix element used as input in channels with leptons

• Simultaneous fit of all the channels

L. Giannini - EPS-HEP 2019

MEM discriminan

More in C. Martin Perez's talk

Results

	35.9 fb ⁻¹ (2016) + 41.5 fb ⁻¹ (2017) (13 TeV				13 TeV)	
		CMS Preliminary	΄ μ	tot	stat	syst
١σ	Fully-hadronic	►+■ +4	-0.38	+1.02 -1.06	+0.54 -0.54	+0.86 -0.91
fb ⁻¹	Single-lepton	HEH	1.22	+0.41 -0.37	+0.19 -0.18	+0.36 -0.32
	Dilepton	F+=+1	1.04	+0.74 -0.71	+0.39 -0.38	+0.63 -0.59
) σ	2016	H	0.85	+0.43 -0.41	+0.22 -0.22	+0.37 -0.35
	2017	;+⊞ +1	1.49	+0.44 -0.40	+0.21 -0.20	+0.39 -0.35
	Combined		1.15	+0.32 -0.29	+0.15 -0.15	+0.28 -0.25 10
					μ̂ = 6	σ̂/σ _{sm}

- systematic uncertainty, especially theoretical (70% of the total), dominant at this stage

$$\mu = 1.49 \, {}^{-0.20}_{+0.21}$$
 (stat) ${}^{+0.39}_{-0.35}$ (syst)

observed (expected) significance of 3.7 (2.6) σ 2017- 41.5 fb⁻

 $\mu = 1.15 \, {}^{-0.15}_{+0.15}$ (stat) ${}^{-0.25}_{+0.28}$ (syst)

observed (expected) significance of 3.9 (3.5) o 2016+17- 77.4 fb⁻¹

First evidence for $t\bar{t}H$, $H \rightarrow b\bar{b}$

PRL 120 (2018) 071802

Boosted $H \rightarrow b\overline{b}$

- Higgs p_T >~ 500 GeV to be sensitive to the inclusive Higgs production
 - The high p_T tail can be sensitive also to deviations from SM
- Using substructure and dedicated bb-tagging techniques
- Data-driven background estimate
- 2016 result
 - Observation of boosted Z(bb)
 - Higgs significance: 1.5(0.7) σ with statistical uncertainty larger than the systematic uncertainties
- Targeting full Run2 analysis

Conclusions

H(bb) combined result summer 2018

• $H \rightarrow b\overline{b}$ had great succes with CMS Run 2 data:

- 2016 dataset:
 - Evidence for $H(b\overline{b})$ in VH mode
 - $H(b\overline{b})$ as input to ttH combination
 - Inclusive search for boosted $H(b\overline{b})$
- 2017 data:
 - Observation of $H(b\overline{b})$ with an improved VH($b\overline{b}$) analysis
 - First Evidence of ttH(bb)
- Possible thanks to great b-tagging and multivariate analysis techniques
- More to come with legacy Run2 results
 - New strategies in order to reduce the systematic uncertainties under investigation
 - Efforts to go for differential measurements

Boosted ggF to be updated

Thank you for your attention!

Additional Material

Bibliography

- "Measurement of ttH production in the H \rightarrow bb decay channel in 41.5 fb⁻¹ of proton-proton collision data at \sqrt{s} = 13 TeV", CMS-PAS-HIG-18-030
 - https://cds.cern.ch/record/2675023
- "Observation of Higgs Boson Decay to Bottom Quarks" Phys. Rev. Lett. 121, 121801 (2018)
 - Supplementary material url: http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-1 8-016/index.html
- "Inclusive search for a highly boosted Higgs boson decaying to a bottom quark-antiquark pair" Phys. Rev. Lett. 120 (2018) 071802
 - Supplementary material url: http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-1 7-010/index.html

Z+jj pT balance – Z+HF control region

Results VH(bb)

Uncertainty source	Δ	μ	
Statistical	+0.26	-0.26	
Normalization of backgrounds	+0.12	-0.12	
Experimental	+0.16	-0.15	-
b-tagging efficiency and misid	+0.09	-0.08	
V+jets modeling	+0.08	-0.07	_
Jet energy scale and resolution	+0.05	-0.05	
Lepton identification	+0.02	-0.01	
Luminosity	+0.03	-0.03	
Other experimental uncertainties	+0.06	-0.05	
MC sample size	+0.12	-0.12	
Theory	+0.11	-0.09	
Background modeling	+0.08	-0.08	-
Signal modeling	+0.07	-0.04	
Total	+0.35	-0.33	

Significance (σ)				
Data set	Expected	Observed	Signal strength	
2017				
0-lepton	1.9	1.3	0.73 ± 0.65	
1-lepton	1.8	2.6	1.32 ± 0.55	
2-lepton	1.9	1.9	1.05 ± 0.59	
Combined	3.1	3.3	1.08 ± 0.34	
Run 2	4.2	4.4	1.06 ± 0.26	
Run 1 + Run 2	4.9	4.8	1.01 ± 0.23	

Results ttHbb

Uncertainty source	$\Delta \hat{\mu}$		
Total experimental	+0.15/-0.13		
b tagging	+0.08/-0.07		
jet energy scale and resolution	+0.05/-0.04		
Total theory	+0.23/-0.19		
signal	+0.15/-0.06		
tt+hf modelling	+0.14/-0.15		
QCD background prediction	+0.10/-0.08		
Size of simulated samples	+0.10/-0.10		
Total systematic	+0.28/-0.25		
Statistical	+0.15/-0.15		
Total	+0.32/-0.29		

	$\hat{\mu} \pm \text{tot} (\pm \text{stat} \pm \text{syst})$	significance obs (exp)
FH 3 b-tags	$1.36^{+3.57}_{-5.36} \begin{pmatrix} +1.68 & +3.15 \\ -1.69 & -5.09 \end{pmatrix}$	0.3σ (0.2σ)
FH 4 b-tags	$-1.54^{+1.41}_{-1.45}$ $\begin{pmatrix}+0.91 & +1.08\\ -0.90 & -1.13\end{pmatrix}$	— (0.7 σ)
FH combined	$-1.69^{+1.43}_{-1.47}~\left(\begin{smallmatrix}+0.83&+1.16\\-0.83&-1.22\end{smallmatrix}\right)$	— (0.7 σ)
SL 4 jets	$1.73^{+2.25}_{-2.21}$ $\begin{pmatrix} +0.88 & +2.07 \\ -0.87 & -2.04 \end{pmatrix}$	0.8σ (0.5σ)
SL 5 jets	$0.73^{+0.98}_{-0.97} \left(egin{smallmatrix} +0.47 & +0.86 \\ -0.46 & -0.86 \end{array} ight)$	$0.8\sigma~(1.0\sigma)$
$SL \ge 6$ jets	$2.05^{+0.76}_{-0.69} \left(\begin{smallmatrix} +0.31 & +0.69 \\ -0.31 & -0.62 \end{smallmatrix} \right)$	3.0σ (1.6σ)
SL combined	$1.84^{+0.62}_{-0.56}~\left(\begin{smallmatrix}+0.26&+0.56\\-0.26&-0.50\end{smallmatrix}\right)$	$3.3\sigma~(1.9\sigma)$
DL 3 jets	$-2.35^{+4.40}_{-2.65}$ $\left(\begin{smallmatrix} +2.13 & +3.85 \\ -2.06 & -1.66 \end{smallmatrix} \right)$	— (0.2 σ)
$DL \ge 4$ jets	$1.57^{+1.02}_{-0.98}~\left(\begin{smallmatrix}+0.55&+0.86\\-0.53&-0.82\end{smallmatrix}\right)$	$1.6\sigma~(1.0\sigma)$
DL combined	$1.62^{+0.90}_{-0.85}~\left(\begin{smallmatrix}+0.50&+0.76\\-0.48&-0.70\end{smallmatrix}\right)$	$1.9\sigma~(1.2\sigma)$
FH+SL+DL combined	$1.49^{+0.44}_{-0.40}\left(\begin{smallmatrix}+0.21&+0.39\\-0.20&-0.35\end{smallmatrix}\right)$	3.7σ (2.6 σ)
FH+SL+DL combined 2016+2017	$1.15^{+0.32}_{-0.29} \left(\begin{smallmatrix} +0.15 & +0.28 \\ -0.15 & -0.25 \end{smallmatrix} \right)$	$3.9\sigma~(3.5\sigma)$

CMS b-tagging

