

Double Higgs boson production and Higgs self-coupling at CLIC

Ulrike Schnoor on behalf of the CLICdp collaboration

> 11 July 2019 EPS-HEP 2019 Ghent

The Compact Linear Collider CLIC

- Future e^+e^- collider at the TeV scale
- Novel accelerator technique based on a two-beam acceleration scheme
- Demonstrated high gradient of 100 MV/m
- Staged operation at 380 GeV, 1.5 TeV, and 3 TeV

- CDR published in 2012
- Optimised detector concept
- Full simulation studies of performance and physics
- Input to the European Strategy Update 2019 https://clic.cern/european-strategy
 - Accelerator and Detector: [arXiv:1812.07987]
 - Physics Potential: [arXiv:1812.07986]
- ► First beams in 2035

CLIC@EPS: A. Robson (New Physics Potential) 12.7.; F. Zarnecki (Top physics) 12.7.; E. Leogrande (Detector) Poster

Higgs pairs at CLIC

[arXiv:1901.05897]

I hree energy stages of CLIC –				
Expected numbers of Higgs pair events:				
	380 GeV	1.4 TeV	3 TeV	
int. luminosity	$1{ m ab}^{-1}$	$2.5{ m ab}^{-1}$	$5{ m ab}^{-1}$	
$P(e^{-})=-0.8/+0.8$ *	1:1	4:1	4:1	
ZHH	≈ 20	170	140	
$HH\nu_{e}\overline{\nu}_{e}$	≈ 2	550	4400	
	+ >	1> 11	>	

Luminosity share between $P(e^{-}, e^{+}) = (-0.8, 0)/(+0.8, 0)$

- ▶ No HH production channel accessible below 500 GeV in e⁺e⁻
- \blacktriangleright Sizable ZHH production starts at $\sqrt{s}\gtrsim$ 500 GeV
- ▶ $HHv_e\overline{v}_e$ production grows with energy
- ► Influence of **beam polarisation:** $P(e^{-}) = -80\% (+80\%)$: $HHv_e \bar{v}_e$ rate modified by factor 1.8 (0.2)

Current CLIC baseline has the second energy stage at $1.5\ {\rm TeV}$ instead of $1.4\ {\rm TeV}$ which is still used for the full-simulation samples studied here

Higgs self-coupling in the Standard Model

In the SM

• Higgs potential in SM: $V = -m_{\rm H}^2 |\phi|^2 + \lambda |\phi|^4$

 \Rightarrow Self-coupling λ determines shape of the potential

• Relation of mass $m_{\rm H}$ and self-coupling λ : $m_{\rm H}^2 = 2\lambda v^2$

- $\Rightarrow Relation of mass and self-coupling indicates if the H(125) boson originates from the Higgs field responsible for electroweak symmetry breaking$
 - Interaction Lagrangian: trilinear self-coupling $g_{\rm HHH} = 6\lambda v$

Higgs self-coupling in the Standard Model

In the SM

• Higgs potential in SM: $V = -m_{\rm H}^2 |\phi|^2 + \lambda |\phi|^4$

 \Rightarrow Self-coupling λ determines shape of the potential

• Relation of mass $m_{\rm H}$ and self-coupling λ : $m_{\rm H}^2 = 2\lambda v^2$

- $\Rightarrow Relation of mass and self-coupling indicates if the H(125) boson originates from the Higgs field responsible for electroweak symmetry breaking$
 - Interaction Lagrangian: trilinear self-coupling $g_{\rm HHH} = 6\lambda v$

 \Rightarrow measure g_{HHH} as effective coupling to check for deviations of λ from the SM:

Higgs self-coupling beyond the Standard Model

Deviations from SM value expected e.g. in models ...

- ... with additional scalar particles (e.g. extended Higgs sectors, SUSY, additional singlets)
- ... where the Higgs is composite
- ... with first-order electroweak phase transition

Expected deviations in certain models

Deviations in $g_{\rm HHH}$, in the model's parameter space where no signal appears at the LHC, but $g_{\rm HHH}$ is non-SM

Model	$\Delta g_{ m HHH}/g_{ m HHH}^{ m SM}$
Mixed-in Singlet	-18 %
Composite Higgs	tens of $\%$
Minimal Supersymmetry	-2% to -15%
NMSSM	-25 %

Gupta, Rzehak, Wells [1305.6397]

In case

 no signal of new EWSB states observed at the LHC

and

 no significant deviations of the Higgs to SM particles couplings measured at LHC

the Higgs self-coupling could be the first evidence that the Higgs sector is non-standard

Analysis strategy

Higgs self-coupling at CLIC

- ► Measure W-boson fusion di-Higgs production $HHv_e\overline{v}_e$ at 3 TeV
- Extract g_{HHH} from cross section and kinematics
- \blacktriangleright Take into account the smaller contributions from ZHH and $HHv_e\overline{v}_e$ at 1.4 TeV

Cross-section dependence on $g_{\rm HHH}\colon\longrightarrow$

- \Rightarrow Measurements of cross sections can be used to extract $g_{\rm HHH}/g_{\rm HHH}^{\rm SM}$
- Ambiguity in $HHv_e\overline{v}_e$

@CLIC: resolved by 2 production modes

Sensitive differential distributions

Differential distributions help to distinguish different values of $\kappa_{\rm HHH}$ [Contino et al: 1309.7038]

$$\kappa_{\mathrm{HHH}} := rac{g_{\mathrm{HHH}}}{g_{\mathrm{HHH}}^{\mathrm{SM}}}$$

Shape differences in lower invariant mass $M_{\rm HH}$ region for

- different values of $\kappa_{\rm HHH}$
- ▶ in particular, distinguish $\kappa_{\text{HHH}} < 1$ from $\kappa_{\text{HHH}} > 1$ even if similar cross section (→ resolve ambiguity)

Invariant mass of Higgs boson pair:

3TeV $HH\nu_e\overline{\nu}_e$ analysis makes use of differential information

Event selection for 3 TeV $HHv_e\overline{v}_e$

- Signal and background samples produced with CLIC_ILD full detector simulation and reconstruction
- Most abundant: $HH \rightarrow b\overline{b}b\overline{b} \Rightarrow$ four b-tagged jets in the forward region and missing E_T
- Backgrounds from ZH and electroweak diboson production
- Event selection based on multivariate analysis (BDT), b-tagging of jets, invariant mass reconstruction

bbbb analysis: Signal region: Signal = 766 events Background = 4527 events

Beam polarisation at higher-energy stages: 80 % (20 %) of the run using $P(e^-) = -80 % (+80 %)$ \rightarrow denoted as "4:1 pol. scheme"

HH cross-section measurements at 1.4 and 3 TeV

- $\blacktriangleright~$ HHv_e \overline{v}_e production at 1.4 and 3 TeV studied in full simulation
- > ZHH production at 1.4 TeV: assumptions based on full-simulation ZH study
- Minimal programme of CLIC for HH cross-section measurements:

		$1.4\text{TeV}(\mathcal{L}=2.5\text{ab}^{-1})$	$3{ m TeV}({\cal L}=5{ m ab}^{-1})$
-		3.6 σ	$>5{ m \sigma}$ for ${\cal L}\gtrsim700{ m fb}^{-1}$
	$\sigma(HHv_{e}\overline{v}_{e})$	$\frac{\Delta\sigma}{\sigma} = 28\%$	$\frac{\Delta\sigma}{\sigma} = 7.3\%$
		EVIDENCE	ÖBSERVATION
-	$\sigma(ZHH)$	5.9 σ	not studied yet
		OBSERVATION	(less sensitive to self-coupling)

direct acces

two production modes

► Next: extracting g_{HHH} from these measurements

Current CLIC baseline has the second energy stage at 1.5 TeV instead of 1.4 TeV which is still used for the full-simulation samples studied here

Measure g_{HHH} in di-Higgs events

From differential information in $HH\nu_e\overline{\nu}_e$ events

- Use two observables sensitive to g_{HHH}: BDT score and M_{HH}
- Perform template fit for different g_{HHH}
 - \Rightarrow -7 %, + 11 % precision on $g_{
 m HHH}$

Higgs self-coupling and Higgs-gauge coupling HHWW

Several diagrams contribute to $HHv_e\overline{v}_e$, incl. HHWW vertex \rightarrow modification parametrized as $\kappa_{HHWW} = g_{HHWW}/g_{HHWW}^{SM}$:

Modifications of invariant di-Higgs mass:

2D limits

Simultaneous fit of $g_{\rm HHH}$ and $g_{\rm HHWW}$ based on $M_{\rm HH}$ in bins of the BDT score plus the $\sigma(\rm ZHH)$ measurement at 1.4 TeV:

Global fit

- Model broad range of possible new physics effects in Effective Field Theory (EFT)
- HH production measurements can be influenced by more BSM effects other than modified Higgs self-coupling
- Other BSM effects can be constrained in other measurements
- \Rightarrow estimate total effect: global SM-EFT fit
- ⇒ at CLIC: global and individual constraints on Higgs self-coupling very similar due to the comprehensive, high-precision Higgs programme at all three energy stages

Results from: The CLIC Potential for New Physics [1812.02093, Sec. 2.2]

----- CLICdp full-simulation analysis with differential information

$$\Delta\chi^2 = 1$$
 corresponds to 68 % C.L.

Comparison to other proposed projects

- CLIC is earliest project where $\Delta \kappa_{\rm HHH} < 10\,\%$ can be reached
- Direct access and two sizable production modes at CLIC
- Global and exclusive constraints very similar (see previous slide)

```
from [1905.03764] (\kappa_3 = \kappa_{\rm HHH})
```


Conclusions

- Unique capability of CLIC: measuring the Higgs self-coupling to -7 %, + 11 % uncertainty
- Direct accessibility of HH production at 1.4 and 3 TeV
- Challenging measurements: small cross section, forward b-quarks
- Benefits from excellent heavy flavor tagging, jet energy resolution of CLIC detector

CLIC double Higgs and Higgs self-coupling programme				
	1.4 TeV	3 TeV		
	3.6 σ	$>5\sigma$ for $\mathcal{L}\gtrsim700{ m fb}^{-1}$		
$\sigma(HHv_{e}\overline{v}_{e})$	$\frac{\Delta\sigma}{\sigma} = 28\%$	$\frac{\Delta\sigma}{\sigma} = 7.3\%$		
	EVIDENCE	OBSERVATION		
σ (ZHH)	5.9 σ			
	OBSERVATION			
$\Delta \kappa_{ m HHH}$	1.4 TeV:	1.4 & 3 TeV:		
	-34 %, +36 %	-7 %, + 11 %		
	rate only analysis	differential analysis		
+ Global EFT fit				

+ BSM interpretation (e.g. Baryogenesis)

 \Rightarrow Together with the high-precision in the couplings of the Higgs to SM particles at CLIC, this measurement will test the nature of the electroweak symmetry breaking mechanism

Additional Material

Further reading

- arXiv:1901.05897: Double Higgs boson production and Higgs self-coupling extraction at CLIC
- arXiv:1812.02093 /CERN-2018-009-M: The CLIC Potential for New Physics (Sec. 2.2)

Higgs self-coupling at CLIC - 11 July 2019

CLIC timeline

2013 - 2019

2020 - 2025

2026 - 2034

CLIC schedule

CLIC Detector: CLICdet

Designed for Particle Flow Analysis and optimized for CLIC environment

- 4 T B-field
- Vertex detector (3 double layers)
- ► Large Silicon tracker R=1.5m
- Highly granular calorimeters:
 - Si-W-ECAL
 - 40 layers (22 X₀)
 - Scint-Fe-HCAL 60 layers $(7.5 \lambda_i)$

Precise timing for background suppression

Brief overview Higgs physics at CLIC

Stage 1

- Higgsstrahlung and W-boson fusion H production
- Model-independent measurement of HZZ coupling
- $\blacktriangleright \ H \rightarrow invisible$

All Stages: Model-independent global fit of couplings:

14 / 14

Double Higgs production at other colliders

Hadron collider CHALLENGE:

- Small cross section
- Overwhelming background in high-BR channels

Current limits from LHC:

```
HH → bbbb, HH → bb \tau\tau, HH→bb \gamma\gamma
combined (ATLAS):
-5.0 < \kappa_{\rm HHH} <12.1 (95% C.L.)
ATLAS-CONF-2018-043
```

Prospects for HL-LHC:

- \blacktriangleright with systematics: $0.52 \leq \kappa_{\rm HHH} \leq 1.5$
- \blacktriangleright without systematics: $0.57 \leq \kappa_{\rm HHH} \leq 1.5$

(68% C.L.) https://cds.cern.ch/record/2650162/

Electron-positron collider

CHALLENGE:

- ZHH accessibility opens around \approx 500 GeV
- Small cross section
- ► W-boson fusion channel grows with energy ⇒ high-energy e⁺e⁻ collider advantageous

Prospects for ILC at 500 GeV: $\mathcal{L} = 4 \text{ ab}^{-1}$ $\Delta \kappa_{\text{HHH}} = 27 \% (68 \% \text{ C.L.})$ [1506.05992]

Indirect measurements of the Higgs self-coupling in single Higgs production possible at **ILC-250** and **FCC-ee**, but no direct di-Higgs production

Processes with two Higgs bosons at CLIC

Processes producing two Higgs bosons:

Indirect measurements of the Higgs self-coupling

- Measure Higgs self-coupling contributing in loops
- Model-dependent
- ▶ Higgs self-coupling effect suppressed w.r.t. direct effects in these diagrams (e.g. gHZZ) → limiting sensitivity
- Global fit necessary
- Possible at CLIC-380, FCC-ee, ILC-250

ILC-250

Strategy described in 1710.07621

FCC-ee

global fit, full programme with all stages $\rightarrow \Delta \kappa_{\rm HHH} = 42\%$ CERN-ACC-2018-0057

JHEP 1802 (2018) 178

Double Higgs boson events from W-boson fusion

 $HH\nu_e\overline{\nu}_e$ events identified by decay products of the two Higgs bosons

- ▶ Most abundant: $HH \rightarrow b\overline{b}b\overline{b}$
- Apply b-tagging to jets
- Reconstruct invariant masses

$HH\nu_e\overline{\nu}_e\to b\overline{b}b\overline{b}$ $\nu_e\overline{\nu}_e$ events in the detector at CLIC

After removing beam-induced background:

- ► Four b-jets in the forward region
- Signals and backgrounds contain missing energy
- Background events in particular from
 - ZH
 - diboson

Cross-section measurement of $HH\nu_{e}\overline{\nu}_{e}$ at 3 TeV

- ▶ First step for self-coupling extraction: cross-section measurement
- ▶ $HHv_e \overline{v}_e$ cross section scales with 1.8 (0.2) for $P(e^-) = -80 \% (+80 \%)$
- Cross-section accuracy depends on the luminosity and polarisation scheme:

Data Percentage with				
$\mathcal{L}[fb^{-1}]$	$P(e^-) = -80\%$	$P(e^-) = +80\%$	$\Delta\sigma/\sigma$	
3000	0 %	0 %	11.6%	-
3000	100%	0 %	8.7 %	
5000	0 %	0 %	9.0%	
5000	80 %	20 %	7.4 %	\longrightarrow 4:1 polarisation scheme
5000	100%	0 %	6.7 %	= current baseline
				- [1812.01644]

Analysis overview and results

Constraints for $\kappa_{\rm HHH}$ for 68 % C.L.

Final sensitivity of CLIC on $g_{\rm HHH}/g_{\rm HHH}^{\rm SM}$ based on

- \blacktriangleright differential information in $HH\nu_{e}\overline{\nu}_{e}$ at 3 TeV
- cross-section measurement of ZHH at 1.4 TeV
- \Rightarrow -7 %, +11 %

Higgs self-coupling at CLIC - 11 July 2019

- Non-standard Higgs self-coupling plays a role in various BSM models
- Example: Electroweak Baryogenesis = one explanation for the matter-antimatter asymmetry in the universe

Ingredients to Electroweak Baryogenesis:

- C and CP-violating processes
- Baryon number violation
- Thermal inequilibrium

can be realised through first-order phase transition in EW symmetry breaking: potential barrier between vacuum "bubbles" where EW symmetry is broken and the unbroken vacuum

Interpretation: Baryogenesis

- Shape of the Higgs potential connected to the phase transition of the early universe from the unbroken to the broken electroweak symmetry
- Baryogenesis with a Higgs + singlet model: CLIC sensitive to the interesting regions

--- CLIC 1.5 TeV $\epsilon_{b-tag} = 90\%$

--- constraint from $\Delta \kappa_{\text{HHH}} = 20\%$ at 95% C.L. --- CLIC 3 TeV di-Higgs searches $\epsilon_{b-tag} = 90\%$ — CLIC 3 TeV di-Higgs searches $\epsilon_{b-tag} = 70\%$ o regions compatible with unitarity, perturbativity, and absolute stability of the EW vacuum • regions also compatible with baryogenesis

Gray areas: indirect reach from other measurements at Stage 1 (dark), Stage 2 (middle), Stage 3 (light)

based on di-Higgs production at CLIC [No, Spannowski: 1807.04284] (using CLICdet Delphes card)