

Search for di-Higgs production at 13 TeV and prospects for HL-LHC

F. Costanza on behalf of the ATLAS Collaboration EPS-HEP2019 July 10th-17th, Ghent

Motivation

Search for di-Higgs production with ATLAS

Non-resonant HH production

- Sensitive to Higgs trilinear coupling λημη.
 - Its value in SM is determined by the v.e.v. and m_H.
 - Its measurement is a test of the shape of the Higgs potential.
- SM cross-section for pp collisions at 13TeV is $\sigma^{\rm SM}_{ggF}=31.05{
 m fb}$.
 - Possible BSM enhancements due to modified λ_{HHH}.

Resonant HH production

- Models containing a heavy spin-0 particle coupling to SM Higgs:
 - Singlet extension;
 - 2HDM;
 - hMSSM;
 - •
- Models with heavy spin-2 particle:
 - Randall-Sundrum Graviton.

ATLAS Run2 publication summary

Channel	L [fb ⁻¹]	Reference		D: Himme		DD		
bБbБ	27.5-36.1	JHEP 01 (2019) 030	8	Di-Higgs assuming SM	_		0.0005%	
bБW⁺W⁻ (bБ€vqq)	36.1	JHEP 04 (2019) 092		m _H = 125 GeV			0.07%	0.01%
bbτ⁺τ⁻	36.1	<u>Phys. Rev. Lett. 121</u> (2018) 191801				0.4%	0.3%	0.03%
W+W-W+W-	36.1	JHEP 05 (2019) 124			5%	3%		0.1%
ьБүү	36.1	JHEP 11 (2018) 40						
W⁺W⁻γγ	36.1	<u>Eur. Phys. J. C 78</u> (2018) 1007	g	34%	25%	7%	3%	0.3%
combination	36.1	<u>1906.02025</u>		bb	ww	π	ZZ	VV
		N	lew!					
bδℓνℓν	139							
VBF bbbb	126	ATLAS-CONF-2019-030						

Search for di-Higgs production with ATLAS

HH → **bbb**: JHEP 01 (2019) 030

- ◆ To recover efficiency at high reconstructed mнн:
 - Resolved: 4 anti-kt jet with R=0.4 tagged as b-jet.
 - ◆ **Boosted**: 2 *anti-kt* jets with *R*=1.0 both with at least a sub-jet with *R*=0.2 tagged as *b-jet*.
- Main background: QCD multijet production.
 - Data-driven estimation in CRs with reduced b-tagging.
- Signal extraction by means of a fit on reconstructed mнн.

HH → $b\bar{b}\tau^+\tau^-$: Phys. Rev. Lett. 121 (2018) 191801

- Considering au e auhad and auhad auhad final states.
- Main source of uncertainties comes from t\(\tau\) modelling (±17%) and MC statistics (±16%).
- Signal extraction by means of a fit on BDT output used to separate signal vs SM background.
- Single channel with the most stringent constraints on non-resonant SM HH production.

Search for di-Higgs production with ATLAS

HH \rightarrow **b** \overline{b} **yy:** JHEP 11 (2018) 40

- **Loose selection**: (sub-)leading jet $p_T > 40(25)$ GeV used for λ HHH analysis and resonances with mx<500 GeV.
- **Tight selection**: (sub-)leading jet $p_T > 100(30)$ GeV used $m_X > 500$ GeV.
- Signal extracted by means of a fit on m_{HH} (m_{yy}) for (non-)resonant production.
- Analysis dominated by statistical uncertainties.

Simultaneous fit to data for cross-section of the signal process and nuisance parameters modelling statistical and systematic uncertainties, using the CLs approach.

Channel	Discriminant: Resonant [non-resonant]			
ьБьБ	тнн [тнн]			
b̄bW⁺W⁻ (b̄bℓvqq)	с.е. [тнн]			
b ̄̄̄̄̄̄̄̄̄̄̄	BDT [BDT]			
W+W-W+W-	c.e. [c.e.]			
b̄δγγ	т _{үү} [тнн]			
W⁺W⁻γγ	$m_{\gamma\gamma} [m_{\gamma\gamma}]$			

Search for di-Higgs production with ATLAS

HH production cross-section:

95% CL upper limit for
$$k_{\lambda} \equiv \frac{\lambda_{HHH}}{\lambda_{HHH}^{SM}} = 1$$
:

- 6.9 x $\sigma_{ggF}^{\rm SM}$ (obs) 10.0 x $\sigma_{qqF}^{\rm SM}$ (exp)

Higgs trilinear coupling:

95% CL confidence intervals:

 $K_{\lambda} \in [-5.0, 12]$ (obs), [-5.8, 12] (exp)

ATL-PHYS-PUB-2019-009

- Indirect limits from single Higgs differential production and decay measurement (80fb⁻¹):
 - $K_{\lambda} \in [-3.2,11.9]$ (obs), [-5.8,12.0] (exp)

Same statistical treatment as described for non-resonant production.

Singlet:

 First ATLAS interpretation of HH results within this model.

 Exclusion in (ms, sinα) and (sinα, tanβ).

hMSSM:

- Exclusion in (mA, tanβ).
- Exclusion more than twice as Run1 in both m_A and tanβ.

• New channel in ATLAS addressing the 2ℓ decay of $HH \rightarrow bbWW^*/ZZ^*/\tau^+\tau^-$.

 First HH published analysis exploiting the full LHC-Run2 dataset (139fb⁻¹).

- Irreducible (~80%): Top (tt̄ and tW), Z+HF.
 - Normalization from control regions.
- Reducible: non-prompt leptons from heavy flavour hadrons.
 - Data-driven estimate from events with same sign leptons.

The four outputs of the DNN, are combined:

$$d_{hh} = \ln\left(\frac{p_{HH}}{p_{Top} + p_{Z-\ell\ell} + p_{Z-\tau\tau}}\right)$$

• mbb and mee are uncorrelated to dbh and are used to define SR.

Observation is consistent with no enhanced di-Higgs production hypothesis.

95% CL upper limit at $k_{\lambda} = 1$ (SM)

	-2σ	-1σ	Expected	+1 σ	+2 σ	Observed
$\sigma(gg \to HH)$ [pb]	0.5	0.6	0.9	1.3	1.9	1.2
$\sigma(gg \to HH)/\sigma^{SM}(gg \to HH)$	14	20	29	43	62	40

- ↑ Target signature: $HH \rightarrow b\overline{b}b\overline{b}$ process with 2 final state VBF jets.
- Motivation: first study of VVHH vertex.
- Similar analysis strategy as in inclusive $HH \rightarrow b\overline{b}b\overline{b}$.
 - Additional selection of 2 VBF jets: $|\eta| > 2$ and in opposite hemispheres.
 - Main background is QCD multijet: data-driven estimation in 2b-CR.
- ◆ Improved b-jet energy resolution (~25%) with BDT-based regression.
- Signal extracted from fit on m_{4b} . No statistically significant excess found.

non-resonant

resonant

Stringent limits on c2v!

95% CL intervals:

$$c_{2V} \in [-1.0, 2.7]$$
 obs. $c_{2V} \in [-1.1, 2.8]$ exp.

Results for the search of resonant production in the talk by R. Jansky [link].

Latest HL-LHC projections published in the Yellow Report by a joint ATLAS+CMS+Theory effort.

 $HH \rightarrow b\bar{b}b\bar{b}$: Extrapolation from Run2 analysis.

- **♦** Fit of *mhh* distribution.
- Main systematic: data-driven multijet modelling.
 - Conservative assumption: uncertainty as in Run2.
 - Alternative assumption: scale as $1/\sqrt{L}$.

 $HH \rightarrow b\bar{b}\tau^+\tau^-$: Extrapolation from Run2 analysis.

- BDT output used as final discriminant.
- Main source of uncertainty in Run2 analysis is MC statistics: included in extrapolation.

 $HH \rightarrow b\overline{b}\gamma\gamma$: Dedicated analysis with parametric smearing based on upgraded detector performance.

m_{γγ} resolution ~1.6GeV.

Search for di-Higgs production with ATLAS

- BDT to reject continuum background and single Higgs background (mainly $t\bar{t}H$).
- Very small impact from systematic uncertainties.

Search for di-Higgs production with ATLAS

- Combined values channel-by-channel:
 - No correlation considered (shown to have negligible impact).
 - Systematic uncertainties included.
- Signal (SM) significance:
 - 4σ expected for ATLAS+CMS!
- Signal (SM) injection test:
 - $\mu_{inj} = 1$: μ measured with ~30% unc.
 - μ_{inj} = 0: SM di-Higgs production excluded at 95% CL.
- k_{λ} measurement (assuming SM value):

$$0.1 < k_{\lambda} < 2.3 \text{ [95\% CL]}$$

 $0.5 < k_{\lambda} < 1.5 \text{ [68\% CL]}$

2nd minimum excluded at 99.4% CL thanks to mhh shape information.

4σ expected for ATLAS+CMS!

Conclusions

- The discovery of di-Higgs production and the measurement of the Higgs trilinear selfcoupling are among the main goals of the (HL-)LHC physics programme.
- The most recent results of the ATLAS collaboration on the topic have been presented.

LHC Run2

- A combination of all 2015-2016 ATLAS analyses and **two new analyses performed on the full LHC-Run2 dataset** ($bb\ell\nu\ell\nu$ and VBF-HH $\rightarrow b\overline{b}bb$) have been presented.
- No observation for enhanced di-Higgs production has been found up to now.
- The most stringent constraint on di-Higgs production cross-section assuming $k\lambda=1$ (SM) is set by the ATLAS HH combination and is $6.9~(10)\times\sigma_{ggF}^{\rm SM}$ obs (exp).
- Strong constraints on the VVHH vertex have been set.

HL-LHC

- The first comprehensive assessment of the HL-LHC physics programme has been recently published in the Yellow Report.
- The YR predicts that the full HL-LHC potential is going to be needed for ATLAS+CMS to reach a discovery significance of 4σ and an uncertainty on K_{λ} measurement of 50%.
- Past experience tells us that these results will be outperformed with the help of new ideas on object reconstruction and physics analysis.