Higgs boson rare and exotic decays at CMS

Fengwangdong Zhang (University of California, Davis)

On behalf of CMS Collaboration
Motivation

- Higgs boson (125 GeV — scalar sector):
 - Discovery in 2012 completed the Standard Model (SM) theory
 - Measurements of Higgs coupling to SM particles consistent with predictions for the moment
 - Beyond Standard Model decays (BSM) not completely excluded by current physics limits
 - Branching ratio of $H \rightarrow$ BSM less than 34% with LHC RunI results
 - Deviations from the SM predictions might give a hint of BSM

\[\text{ATLAS and CMS} \quad \begin{bmatrix} \kappa_Z, \kappa_W, \kappa_T, \kappa_B, \kappa_G, \kappa_V, B_{\text{BSM}} \end{bmatrix} \]

\[-2 \ln \Lambda \quad \begin{array}{c}
\text{Observed} \\
\text{SM expected}
\end{array} \]

\[\text{JHEP08 (2016) 045} \]
Exotic & rare decays of Higgs boson

Class 1: Decays to SM particles:
- Very small branching ratio increases difficulty of observation (eg: H→μμ)
- Invisible decays with neutrinos in the final states
- An excess on SM prediction (decay rates & cross section) might be a sign of BSM

Class 2: Decays in BSM modes:
- Decays to light pseudo-scalar bosons (eg: H→aa)
- Invisible decays with large missing transverse energy (eg: H→dark photon)
- Decays with lepton flavor violation (LFV) (eg: H→μτ)

<table>
<thead>
<tr>
<th>Process</th>
<th>SM Branching ratio</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>H → μμ</td>
<td>~ 2 × 10^{-4}</td>
<td>1</td>
</tr>
<tr>
<td>H → J/ψ J/ψ</td>
<td>~ 1.5 × 10^{-10}</td>
<td>1</td>
</tr>
<tr>
<td>H → YY</td>
<td>~ 2 × 10^{-9}</td>
<td>1</td>
</tr>
<tr>
<td>H → aa → μμττ</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>H → aa → 4τ</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>H → invisible</td>
<td>~ 1 × 10^{-3}</td>
<td>1/2</td>
</tr>
<tr>
<td>LFV</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

- LFV results in backup page & Dermot’s talk
- This talk presents two recent examples of many H → aa searches at CMS
Higgs decays to $\mu^+\mu^-$ pair

- Generated Next-to-leading order (NLO) for mass ranges: 120, 125, 130 GeV
- Background estimated from data
- Boost decision tree (BDT) method applied for distinguishing signal & background shapes
- Dimuon mass resolution is incorporated for optimizing the signal sensitivity
Higgs decays to $\mu^+\mu^-$ pair

- Expected upper limits: 2.2 σ
- Observed upper limits: 2.9 σ

- Expected signal significance: 0.9
- Observed signal strength: 1.0 ± 1.0 (stat.) ± 0.1 (syst.)

To measure the signal strength:
- Maximum likelihood fit to dimuon invariant mass spectrum:
- Main experimental uncertainties:
 - Jet energy scale & resolution: 6%
- Main theoretical uncertainty:
 - Factorization & renormalization scales: 6%

Combined RunI and RunII data

- SM branching ratio: 2.17×10^{-4}
- Observed branching ratio upper limits: 6.4×10^{-4}

Phys. Rev. Lett. 122, 021801
Rare exclusive decays of Higgs to mesons
- Promising lab to study **Yukawa couplings & BSM**
- 4μ final state offers a clean signature
- Observed upper limits set for H \rightarrow unpolarized mesons

Channel	**Branching ratio**
$H \rightarrow J/\psi J/\psi$ | 1.5×10^{-10}
$H \rightarrow YY$ | 2×10^{-9}

Exclusion limits

<table>
<thead>
<tr>
<th>Channel</th>
<th>Observed</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H \rightarrow J/\psi J/\psi$</td>
<td>1.8×10^{-3}</td>
<td>$1.8 (\pm 0.2/-0.1) \times 10^{-3}$</td>
</tr>
<tr>
<td>$H \rightarrow YY$</td>
<td>1.4×10^{-3}</td>
<td>$1.4 (\pm 0.1) \times 10^{-3}$</td>
</tr>
</tbody>
</table>
Exotic decays in 2HDM + S

- **Two-Higgs-Doublet Model (2HDM)**: two doublets of scalar fields (ϕ_1, ϕ_2) in the SM Lagrangian
 - Type-2: *minimal supersymmetry model (MSSM)*
- Further extension: **a scalar singlet (2HDM + S)**
 - Type-2: *Next-to-minimal-supersymmetry-model (NMSSM)*
- Symmetry breaking \rightarrow five physical states are predicted:
 - Neutral scalars: h_1, h_2, h_3
 - Neutral pseudo-scalars: a_1, a_2
 - Charged scalars: H^\pm
- Four types of 2HDM (doublets couplings to fermions):

<table>
<thead>
<tr>
<th>Type</th>
<th>Type-1</th>
<th>Type-2</th>
<th>Type-3 (lepton-specific)</th>
<th>Type-4 (flipped)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up-type quarks</td>
<td>Φ_2</td>
<td>Φ_2</td>
<td>Φ_2</td>
<td>Φ_2</td>
</tr>
<tr>
<td>Down-type quarks</td>
<td>Φ_2</td>
<td>Φ_1</td>
<td>Φ_2</td>
<td>Φ_1</td>
</tr>
<tr>
<td>Charged leptons</td>
<td>Φ_2</td>
<td>Φ_1</td>
<td>Φ_1</td>
<td>Φ_2</td>
</tr>
</tbody>
</table>

- **Type-2**: MSSM-like
- **Type-3**: enhanced couplings to leptons at large $\tan\beta$
H \rightarrow aa \rightarrow $\mu\mu\tau\tau$

- Scan the reconstructed dimuon mass spectrum:
 - For a characteristic resonance structure
 - Invariant mass of four objects in the final state is below 100-130 GeV:
 - Compatibility with a Higgs boson decay
- Parametrized signal & background distribution:
 - Perform an unbinned maximum likelihood fit
- Final states with different tau decay modes:
 - $\mu\mu + e\mu$
 - $\mu\mu + e\tau_h$
 - $\mu\mu + \mu\tau_h$
 - $\mu\mu + \tau_h\tau_h$

Pseudo-scalar boson mass range: [15, 60] GeV
Isolated muons and taus

- In the scenario of type-3:
 - Results provide the tightest constraints in this mass range
H → aa → 4τ

- Pseudo-scalar boson mass range: [4, 15] GeV
- Lorentz-boosted taus with overlapping decay products
- Objects in the final states: 3τμ + τh (one prong)

- Signal event signature:
 - Two same sign muons with large angular separation
 - Each muon accompanied by a nearby opposite-sign particle (track)
- Compared to RunI, significantly improved upper limits:
 - 30% for low masses
 - ~ 80% for intermediate masses

2D pseudo-scalar boson mass [GeV]
2HDM + S type II Summary

CMS Preliminary

2HDM+S type II
\(\tan \beta = 2.0 \)

\[\frac{\sigma_h}{\sigma_{SM}} \left(\frac{B(h \to \text{aa})}{B(h \to \text{SM})} \right) \]

95% CL on \(\frac{\sigma_h}{\sigma_{SM}} \left(\frac{B(h \to \text{aa})}{B(h \to \text{SM})} \right) \)

Boosted topology

Isolated decay products

https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryResultsHIG
H \rightarrow invisible (association with top-quark pair)

- Allow to significantly suppress and constrain SM backgrounds
- Provide higher sensitivity for BSM with enhanced top quark Yukawa coupling than other Higgs production modes
- Constraint:
 - Weaker than limits using VBF topology
 - Comparable with limits from VH
 - Stronger than limits from ggH
H \rightarrow invisible (VBF & VH & ggH)

arXiv:1809.05937

Channel combination:

- Consistent with backgrounds from SM prediction
- Most sensitive channel in the combination: VBF
- **Strongest constraints on fermion (scalar) dark-matter** particles with masses smaller than 18 (7) GeV
Search for dark photons in ZH decays

- γ_D: a massless dark photon coupling to Higgs boson through a dark charged sector
- No significant excess of events is found
- First time to set upper limits based on the full RunII data

Also see Varun’s talk
Summary & Conclusion

• CMS collaboration has made many progresses in Higgs rare & exotic decays
 • No significant excess above SM prediction has been found
 • In general, more stringent constraints were set using partial RunII data than RunI
• More data are needed for some decay channels to reach the sensitivity
 • First limit setting based on full RunII data analysis:
 • H → photon + dark photon (in association with a Z boson)
• More interesting results are coming out

Stay tuned!
Backup
Table 1: The optimized event categories, the product of acceptance and selection efficiency in % for the different production processes, the total expected number of SM signal events \(m_H = 125 \text{GeV} \), the estimated number of background events per GeV at 125 GeV, the FWHM of the signal peak, the background functional fit form, and the \(S/\sqrt{B} \) ratio within the FWHM of the expected signal distribution.

| BDT response quantile [%] | Maximum muon \(|\eta|\) [%] | ggH [%] | VBF [%] | WH [%] | ZH [%] | ttH [%] | Signal Bkg/GeV @125 GeV | FWHM [GeV] | Bkg fit function | \(S/\sqrt{B} \) @ FWHM |
|--------------------------|------------------|--------|--------|--------|--------|--------|------------------------|----------|-------------------|------------------|
| 0 – 8 | \(|\eta| < 2.4\) | 4.9 | 1.3 | 3.3 | 6.3 | 21.2 | 3.13 \times 10^3 | 4.2 | mBW | 0.12 |
| 8 – 39 | \(1.9 < \eta < 2.4\) | 5.6 | 1.7 | 3.9 | 3.5 | 1.3 | 22.3 | 1.34 \times 10^3 | 7.2 | mBW \(B_{deg4} \) | 0.16 |
| 8 – 39 | \(0.9 < \eta < 1.9\) | 10 | 2.8 | 6.5 | 6.4 | 5.2 | 41.1 | 2.24 \times 10^3 | 4.1 | mBW \(B_{deg4} \) | 0.29 |
| 8 – 39 | \(\eta < 0.9\) | 3.2 | 0.8 | 1.9 | 2.1 | 3.5 | 12.7 | 7.83 \times 10^2 | 2.9 | mBW \(B_{deg4} \) | 0.18 |
| 39 – 61 | \(1.9 < \eta < 2.4\) | 2.9 | 1.7 | 2.7 | 2.7 | 0.3 | 11.8 | 4.37 \times 10^2 | 7.0 | mBW \(B_{deg4} \) | 0.14 |
| 39 – 61 | \(0.9 < \eta < 1.9\) | 7.2 | 3.3 | 6.1 | 5.2 | 1.3 | 29.2 | 9.70 \times 10^2 | 4.0 | mBW \(B_{deg4} \) | 0.31 |
| 39 – 61 | \(\eta < 0.9\) | 3.6 | 1.1 | 2.6 | 2.2 | 0.9 | 14.5 | 4.81 \times 10^2 | 2.8 | mBW | 0.26 |
| 61 – 76 | \(1.9 < \eta < 2.4\) | 1.2 | 1.5 | 1.8 | 1.7 | 0.2 | 5.2 | 1.48 \times 10^2 | 7.6 | mBW \(B_{deg4} \) | 0.11 |
| 61 – 76 | \(0.9 < \eta < 1.9\) | 4.8 | 3.6 | 4.5 | 4.4 | 0.7 | 20.3 | 5.12 \times 10^2 | 4.2 | mBW \(B_{deg4} \) | 0.29 |
| 61 – 76 | \(\eta < 0.9\) | 3.2 | 1.6 | 2.3 | 2.1 | 0.6 | 13.1 | 3.22 \times 10^2 | 3.0 | mBW | 0.28 |
| 76 – 91 | \(1.9 < \eta < 2.4\) | 1.2 | 3.1 | 2.2 | 2.1 | 0.2 | 5.8 | 1.04 \times 10^2 | 7.1 | mBW \(B_{deg4} \) | 0.14 |
| 76 – 91 | \(0.9 < \eta < 1.9\) | 4.4 | 8.7 | 6.2 | 6.0 | 1.1 | 20.3 | 3.60 \times 10^2 | 4.2 | mBW \(B_{deg4} \) | 0.35 |
| 76 – 91 | \(\eta < 0.9\) | 3.1 | 4.0 | 3.8 | 3.6 | 0.9 | 13.7 | 2.36 \times 10^2 | 3.2 | mBW | 0.34 |
| 91 – 95 | \(\eta < 2.4\) | 1.7 | 6.4 | 2.5 | 2.6 | 0.5 | 8.6 | 96.0 | 4.0 | mBW | 0.28 |
| 95 – 100 | \(\eta < 2.4\) | 2.0 | 19 | 1.5 | 1.4 | 0.7 | 13.7 | 83.4 | 4.1 | mBW | 0.48 |

FWHM: Full Width at Half Maximum of the expected signal distribution
$H \rightarrow aa \rightarrow 2\mu 2\tau/4\tau$

Pseudo-scalar boson mass range: [15, 60] GeV

JHEP11 (2018) 018
H \rightarrow aa \rightarrow 2\mu 2\tau/4\tau

Pseudo-scalar boson mass range: [15, 60] GeV
$H \rightarrow aa \rightarrow 4\tau$

Pseudo-scalar boson mass range: $[4, 15]$ GeV
H → invisible (association with top-quark pair)
H → invisible (association with top-quark pair)

Graph:
- **X-axis:** Events
- **Y-axis:** Data/pred.
- **Legend:**
 - Lost Lepton
 - Other (not from t)
 - tH, H→invisible
 - Z→νν
 - Total uncertainty
 - B(H→invisible) = 100%

Data Points:
- A: \(N_\ell \leq 3, t_{mod} > 10, M_{b} \leq 175 \text{ GeV} \)
- B: \(N_\ell \leq 3, t_{mod} > 10, M_{b} > 175 \text{ GeV} \)
- C: \(N_\ell \leq 4, t_{mod} \leq 0, M_{b} \leq 175 \text{ GeV} \)
- D: \(N_\ell \leq 4, t_{mod} \leq 0, M_{b} > 175 \text{ GeV} \)
- E: \(N_\ell \geq 4, 0 < t_{mod} \leq 10, M_{b} \leq 175 \text{ GeV} \)
- F: \(N_\ell \geq 4, 0 < t_{mod} \leq 10, M_{b} > 175 \text{ GeV} \)
- G: \(N_\ell \geq 4, t_{mod} > 10, M_{b} \leq 175 \text{ GeV} \)
- H: \(N_\ell \geq 4, t_{mod} > 10, M_{b} > 175 \text{ GeV} \)

Table:

<table>
<thead>
<tr>
<th>Source</th>
<th>All-hadronic</th>
<th>Semi-leptonic</th>
<th>Di-leptonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCD scale cross section</td>
<td>+5.8/-9.2%</td>
<td>+5.8/-9.2%</td>
<td>+5.8/-9.2%</td>
</tr>
<tr>
<td>QCD scale acceptance</td>
<td>0.7–14.0%</td>
<td>0.8–30.0%</td>
<td>1.0–7.0%</td>
</tr>
<tr>
<td>PDF cross section</td>
<td>3.6%</td>
<td>3.6%</td>
<td>3.6%</td>
</tr>
<tr>
<td>PDF acceptance</td>
<td>0.6–3.7%</td>
<td>0.5–4.0%</td>
<td>1.0–1.9%</td>
</tr>
<tr>
<td>Sample statistics</td>
<td>1.0–10.0%</td>
<td>1.6–11.2%</td>
<td>3.3–26.4%</td>
</tr>
<tr>
<td>Luminosity</td>
<td>2.5%</td>
<td>2.5%</td>
<td>2.5%</td>
</tr>
<tr>
<td>Trigger</td>
<td>2.0 %</td>
<td>2.0%</td>
<td>0.2–0.5%</td>
</tr>
<tr>
<td>Pileup</td>
<td>0.2–2.0%</td>
<td>0.1–2.5%</td>
<td>0.0–3.0%</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>2.8–7.6%</td>
<td>2.8–9.7%</td>
<td>0.0–9.0%</td>
</tr>
<tr>
<td>B-tagging scale factor</td>
<td>0.3–3.3%</td>
<td>1.2–1.6%</td>
<td>0.1–1.3%</td>
</tr>
<tr>
<td>Lepton efficiency</td>
<td>0.0–0.7%</td>
<td>3.0–3.1%</td>
<td>3.8–5.5%</td>
</tr>
<tr>
<td>Unclustered (\not{p}_{T}^{miss})</td>
<td>0.2–1.8%</td>
<td>–</td>
<td>0.1–12.3%</td>
</tr>
<tr>
<td>Top/W tagging</td>
<td>1.0 – 20%</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
H \rightarrow invisible (VBF & VH & ggH)

[Graphs and plots showing distributions of m$_{jj}$ and $\Delta\eta_{jj}$ for CMS simulations and data from arXiv:1809.05937]
H \rightarrow invisible (VBF & VH & ggH)

Shape analysis
- Observed
- Median expected
- 68% expected
- 95% expected

Cut-and-count
- Observed
- Median expected
- 68% expected
- 95% expected

CMS
- 35.9 fb$^{-1}$ (13 TeV)

4.9 fb$^{-1}$ (7 TeV) + 19.7 fb$^{-1}$ (8 TeV) + 38.2 fb$^{-1}$ (13 TeV)

κ_F vs κ_V
- LHC best fit
- 68% CL
- 95% CL
- SM production

$-2\Delta\log(L)$ vs $B(H \rightarrow \text{inv})$
- Observed
- Expected
- Combined 7+8 TeV
- Combined 13 TeV
- Combined 7+8+13 TeV
Search for dark photons in ZH decays

CMS-EXO-19-007

<table>
<thead>
<tr>
<th>Process</th>
<th>Yields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>14</td>
</tr>
<tr>
<td>Nonresonant bkg.</td>
<td>2.4 ± 1.1</td>
</tr>
<tr>
<td>WZ</td>
<td>8.1 ± 2.0</td>
</tr>
<tr>
<td>ZZ</td>
<td>1.5 ± 0.3</td>
</tr>
<tr>
<td>Zγ</td>
<td>0.7 ± 0.7</td>
</tr>
<tr>
<td>Other bkg.</td>
<td>0.6 ± 0.3</td>
</tr>
<tr>
<td>Total bkg.</td>
<td>13.3 ± 3.8</td>
</tr>
</tbody>
</table>

ZH_{125} (BR=10%) 17.9 ± 1.2 (1.42 ± 0.09 %)
ZH_{200} (BR=10%) 12.3 ± 0.8 (4.32 ± 0.28 %)
ZH_{300} (BR=10%) 3.9 ± 0.2 (6.80 ± 0.34 %)

Lepton flavor violation of Higgs decaying to $\mu \tau$ and $e \tau$

- Use boost decision tree approach to distinguish signal and background
- Misidentified lepton background estimated from data
- Final states with different Higgs decay modes:
 - $\mu \tau_h$
 - $\mu \tau_e$
 - $e \tau_h$
 - $e \tau_\mu$

Presence of LFV Higgs boson couplings would allow $\tau \rightarrow \mu$ or $\tau \rightarrow e$ through a virtual Higgs boson

LFV Higgs boson decay to μe is strongly constrained by the $\mu \rightarrow e\gamma$ limit
Lepton flavor violation of Higgs decaying to $\mu \tau$ and $e \tau$

Upper limits on the off-diagonal $\mu \tau$ and $e \tau$ Yukawa couplings at 95% confidence level

$$\sqrt{|Y_{\mu \tau}|^2 + |Y_{\tau \mu}|^2} < 1.43 \times 10^{-3}$$

$$\sqrt{|Y_{e \tau}|^2 + |Y_{\tau e}|^2} < 2.26 \times 10^{-3}$$