

Higgs boson rare and exotic decays at CMS

Fengwangdong Zhang (University of California, Davis)

On behalf of CMS Collaboration

Motivation

- Higgs boson (125 GeV scalar sector):
 - Discovery in 2012 completed the Standard Model (SM) theory
 - Measurements of Higgs coupling to SM particles consistent with predictions for the moment
 - Beyond Standard Model decays (BSM) not completely excluded by current physics limits
 - Branching ratio of H—> BSM less than 34% with LHC RunI results
 - Deviations from the SM predictions might give a hint of BSM

Exotic & rare decays of Higgs boson

Class 1: Decays to SM particles:

- Very small branching ratio increases difficulty of observation (eg: $H \rightarrow \mu\mu$)
- Invisible decays with neutrinos in the final states
- An excess on SM prediction (decay rates & cross section) might be a sign of BSM

Class 2: Decays in BSM modes:

- Decays to light pseudo-scalar bosons (eg: H—> aa)
- Invisible decays with large missing transverse energy (eg: H—> dark photon)
- Decays with lepton favor violation (LFV) (eg: $H \rightarrow \mu \tau$)

Process	SM Branching ratio	Class
Η -> μμ	~ 2 × 10 ⁻⁴	1
H—> J/ψ J/ψ	~ 1.5 × 10 ⁻¹⁰	1
H->YY	~ 2 × 10 ⁻⁹	1
H-> aa -> μμττ	_	2
H —> aa —> 4τ	_	2
H -> invisible	~ 1 × 10 ⁻³	1/2
LFV	_	2

LFV results in backup page & Dermot's talk

This talk presents two recent examples of many H → aa searches at CMS

Higgs decays to μ+μ- pair

Phys. Rev. Lett. 122, 021801

Transformed BDT

- Generated Next-to-leading order (NLO) for mass ranges: 120, 125, 130 GeV
- Background estimated from data
- Boost decision tree (BDT) method applied for distinguishing signal & background shapes
- Dimuon mass resolution is incorporated for optimizing the signal sensitivity

Higgs decays to μ+μ- pair

- Observed branching ratio upper limits: 6.4 x 10⁻⁴
- Expected upper limits: 2.2 σ
- Observed upper limits: 2.9 σ
- Expected signal significance: 0.9
- Observed signal strength: 1.0 ± 1.0 (stat.) ± 0.1 (syst.)

Phys. Rev. Lett. 122, 021801

- To measure the signal strength:
 - Maximum likelihood fit to dimuon invariant mass spectrum:
- Main experimental uncertainties:
 - Jet energy scale & resolution: 6%
- Main theoretical uncertainty:
 - Factorization & renormalization scales: 6%

$H \longrightarrow J/\psi J/\psi - YY$

6

Channel	Branching ratio
H —> J/ψ J/ψ	1.5 × 10 ⁻¹⁰
H -> YY	2 × 10 ⁻⁹

arXiv:1905.10408

- Rare exclusive decays of Higgs to mesons
 - Promising lab to study Yukawa couplings & BSM
- 4μ final state offers a clean signature
- Observed upper limits set for H—> unpolarized mesons

Exclusion limits 95% C.L.	Observed	Expected
H —> J/ψ J/ψ	1.8 × 10 ⁻³	1.8 (+0.2/-0.1) × 10 ⁻³
H —> YY	1.4 × 10 ⁻³	1.4 (± 0.1) × 10 ⁻³

Exotic decays in 2HDM + S

- Two-Higgs-Doublet Model (2HDM): two doublets of scalar fields (φ1,φ2) in the SM Lagrangian
 - Type-2: minimal supersymmetry model (MSSM)
- Further extension: a scalar singlet (2HDM + S)
 - Type-2: Next-to-minimal-supersymmetry-model (NMSSM)
- Symmetry breaking —> five physical states are predicted:
 - Neutral scalars: h₁, h₂, h₃
 - Neutral pseudo-scalars: a₁, a₂
 - Charged scalars: H±
- Four types of 2HDM (doublets couplings to fermions):

	Type-1	Type-2	Type-3 (lepton-specific)	Type-4 (flipped)
Up-type quarks	Φ_2	Φ_2	Φ_2	Φ_2
Down-type quarks	Φ_2	Φ_1	Φ_2	Φ_1
Charged leptons	Φ_2	Φ_1	Φ_1	Φ_2

7

Type-2: MSSM-like

Type-3: enhanced couplings to leptons at large tanβ

JHEP11 (2018) 018

- In the scenario of type-3:
 - Results provide the tightest
 constraints in this mass range

$H -> aa -> \mu \mu \tau \tau$

- Scan the reconstructed dimuon mass spectrum:
 - For a characteristic resonance structure
- Invariant mass of four objects in the final state is below 100-130 GeV:
 - Compatibility with a Higgs boson decay
- Parametrized signal & background distribution:
 - Perform an unbinned maximum likelihood fit
- Final states with different tau decay modes:
 - µµ + eµ
 - μμ + eτ_h
 - μμ + μτ_h
 - μμ + τ_hτ_h
- Pseudo-scalar boson mass range: [15, 60] GeV

35.9 fb⁻¹ (13 TeV)

Median expected

68% expected

95% expected

ma (GeV)

Observed

Isolated muons and taus

$H -> aa -> 4\tau$

- Pseudo-scalar boson mass range: [4, 15] GeV
- Lorentz-boosted taus with overlapping decay products
- Objects in the final states: $3\tau_{\mu} + \tau_{h}$ (one prong)
- Signal event signature:
 - Two same sign muons with large angular separation
 - Each muon accompanied by a nearby opposite-sign particle (track)
- Compared to Runl, significantly **improved upper limits**:
 - 30% for low masses
 - ~ 80% for intermediate masses

2D pseudo-scalar boson mass [GeV]

2HDM + S type II Summary

https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryResultsHIG

H —> invisible (association with top-quark pair)

CMS-HIG-18-008

- Reinterpretation of an analysis designed for:
 - top squarks -> top quarks + neutrinos

First constraints on the branching fraction of this channel

- Allow to significantly suppress and constrain SM backgrounds
- Provide higher sensitivity for BSM with enhanced top quark
 Yukawa coupling than other Higgs production modes
- Constraint:
 - Weaker than limits using VBF topology
 - Comparable with limits from VH
 - Stronger than limits from ggH

H -> invisible (VBF & VH & ggH)

Run I + RunII combination:

- Consistent with backgrounds from SM prediction
- Most sensitive channel in the combination: VBF
- Strongest constraints on fermion (scalar) dark-matter particles with masses smaller than 18 (7) GeV

$4.9 \text{ fb}^{-1} (7 \text{ TeV}) + 19.7 \text{ fb}^{-1} (8 \text{ TeV}) + 38.2 \text{ fb}^{-1} (13 \text{ TeV})$ 10⁻³⁷ $4.9 \text{ fb}^{-1} (7 \text{ TeV}) + 19.7 \text{ fb}^{-1} (8 \text{ TeV}) + 38.2 \text{ fb}^{-1} (13 \text{ TeV})$ $\sigma_{\text{DM-nucleon}}^{\text{SI}}\left[\text{cm}^{2}\right]$ → inv)/σ_{SM} 90% CL limits CMS $B(H\rightarrow inv) < 0.16$ Observed Higgs-portal models $\sigma \times B(H \cdot$ 10⁻⁴⁰ --- Fermion DM 0.7 68% expected Scalar DM . upper limit on 0.6 10^{-41} 95% expected **Direct detection** 10^{-42} XENON-1T - LUX 10^{-43} PandaX-II **CDMSLite** 占 10^{-44} 0.3 - CRESST-II %56 - CDEX-10 10^{-46} Combined 7+8+13 TeV Combined 13 TeV Combined 7+8 TeV 10² 10 m, [GeV] 12

Channel combination:

Search for dark photons in ZH decays

CMS-EXO-19-007 Reference: Phys. Rev. D. 93. 093011

- γ_D: a massless dark photon coupling to Higgs boson through a dark charged sector
- No significant excess of events is found
- First time to set upper limits based on the full Runll data

Also see Varun's talk

Summary & Conclusion

- CMS collaboration has made many progresses in Higgs rare & exotic decays
 - No significant excess above SM prediction has been found
 - In general, more stringent constraints were set using partial Runll data than Runl
- More data are needed for some decay channels to reach the sensitivity
- First limit setting based on full Runll data analysis:
 - H —> photon + dark photon (in association with a Z boson)
- More interesting results are coming out

Stay tuned!

Backup

Higgs decays to μ+μ- pair

Phys. Rev. Lett. 122, 021801

Table 1: The optimized event categories, the product of acceptance and selection efficiency in % for the different production processes, the total expected number of SM signal events ($m_{\rm H} = 125\,{\rm GeV}$), the estimated number of background events per GeV at 125 GeV, the FWHM of the signal peak, the background functional fit form, and the S/\sqrt{B} ratio within the FWHM of the expected signal distribution.

BDT response	Maximum	ggH	VBF	WH	ZH	tŧH	Signal	Bkg/GeV	FWHM	Bkg fit	S/\sqrt{B}
quantile [%]	muon $ \eta $	[%]	[%]	[%]	[%]	[%]		@125 GeV	[GeV]	function	@ FWHM
0-8	$ \eta $ < 2.4	4.9	1.3	3.3	6.3	32	21.2	3.13×10^{3}	4.2	mBW $B_{\text{deg }4}$	0.12
8 - 39	$1.9 < \eta < 2.4$	5.6	1.7	3.9	3.5	1.3	22.3	1.34×10^3	7.2	$mBW B_{deg 4}$	0.16
8 - 39	$0.9 < \eta < 1.9$	10	2.8	6.5	6.4	5.2	41.1	2.24×10^{3}	4.1	$mBW B_{deg 4}$	0.29
8 - 39	$ \eta $ < 0.9	3.2	0.8	1.9	2.1	3.5	12.7	7.83×10^{2}	2.9	$mBW B_{deg 4}$	0.18
39 - 61	$1.9 < \eta < 2.4$	2.9	1.7	2.7	2.7	0.3	11.8	4.37×10^2	7.0	$mBW B_{deg 4}$	0.14
39 - 61	$0.9 < \eta < 1.9$	7.2	3.3	6.1	5.2	1.3	29.2	9.70×10^{2}	4.0	$mBW B_{deg 4}$	0.31
39 - 61	$ \eta $ < 0.9	3.6	1.1	2.6	2.2	0.9	14.5	4.81×10^2	2.8	mBW	0.26
61 - 76	$1.9 < \eta < 2.4$	1.2	1.5	1.8	1.7	0.2	5.2	1.48×10^{2}	7.6	mBW $B_{\text{deg }4}$	0.11
61 - 76	$0.9 < \eta < 1.9$	4.8	3.6	4.5	4.4	0.7	20.3	5.12×10^{2}	4.2	mBW $B_{\text{deg }4}$	0.29
61 - 76	$ \eta $ < 0.9	3.2	1.6	2.3	2.1	0.6	13.1	3.22×10^{2}	3.0	mBW	0.28
76 - 91	$1.9 < \eta < 2.4$	1.2	3.1	2.2	2.1	0.2	5.8	1.04×10^{2}	7.1	mBW $B_{\text{deg }4}$	0.14
76 - 91	$0.9 < \eta < 1.9$	4.4	8.7	6.2	6.0	1.1	20.3	3.60×10^{2}	4.2	mBW $B_{\text{deg }4}$	0.35
76 - 91	$ \eta $ < 0.9	3.1	4.0	3.8	3.6	0.9	13.7	2.36×10^{2}	3.2	mBW	0.34
91 - 95	$ \eta $ < 2.4	1.7	6.4	2.5	2.6	0.5	8.6	96.0	4.0	mBW	0.28
95 - 100	$ \eta $ < 2.4	2.0	19	1.5	1.4	0.7	13.7	83.4	4.1	mBW	0.48
Total	$ \eta $ < 2.4	59	61	51	52	49	253	1.30×10^{4}	3.9		

FWHM: Full Width at Half Maximum of the expected signal distribution

H -> aa $-> 2\mu 2\tau /4\tau$

JHEP11 (2018) 018

Pseudo-scalar boson mass range: [15, 60] GeV

CMS-HIG-18-006

Pseudo-scalar boson mass range: [4, 15] GeV

Source	Value	Affected sample	Туре	Effect on the total yield	
Statistical	2 (00/		him has him	total yield	
	3–60%	bkg.	bin-by-bin	-	
uncertainties in $C(i,j)$		1.1	1		
Extrapolation	-	bkg.	shape	_	
uncertainties in $C(i,j)$					
Uncertainty in the 1D	-	bkg.	shape	-	
template $f_{1D}(i)$					
Integrated luminosity	2.5%	signal	norm.	2.5%	
Muon identification and trigger	2% per muon	signal	norm.	4%	
efficiency					
Track selection and	4–12% per track	signal	shape	10–18%	
isolation efficiency					
MC stat. uncertainties in					
signal yields	8–100%	signal	bin-by-bin	5–20%	
Theory uncertainties in the signal acceptance					
$\mu_{ m R}$ and $\mu_{ m F}$ variations		signal	norm.	< 2%	
PDF (VBF, VH, t t H)		signal	norm.	2%	
Theory uncert	ainties in the signa	l cross sect	ions		
$\mu_{\rm R}$ and $\mu_{\rm F}$ variations (gg \rightarrow H(125))			norm.	+4.6% -6.7%	
$\mu_{\rm R}$ and $\mu_{\rm F}$ variations (VBF)			norm.	$+0.4\% \\ -0.3\%$	
$\mu_{\rm R}$ and $\mu_{\rm F}$ variations (VH)			norm.	+1.8% -1.6%	
$\mu_{\rm R}$ and $\mu_{\rm F}$ variations (t t H)			norm.	+5.8% -9.2%	
,				-7.270	
PDF (ggF \rightarrow H(125))			norm.	3.1%	
PDF (VBF)			norm.	2.1%	
PDF (VH)			norm.	1.8%	
PDF (ttH)			norm.	3.6%	

H —> invisible (association with top-quark pair)

CMS-HIG-18-008

H —> invisible (association with top-quark pair)

A: $N_J \le 3$, $t_{mod} > 10$, $M_{lb} \leq 175 \text{ GeV}$ B: $N_J \le 3$, $t_{mod} > 10$, $M_{lb} > 175 \text{ GeV}$ $H = C: N_J \ge 4, t_{mod} \le 0,$ $M_{lb} \leq 175 \text{ GeV}$ D: $N_J \ge 4$, $t_{mod} \le 0$, $M_{lb} > 175 \text{ GeV}$ E: $N_J \ge 4$, $0 < t_{mod} \le 10$, $M_{lb} \le 175 \text{ GeV}$ F: $N_J \ge 4$, $0 < t_{mod} \le 10$, $M_{lb} > 175 \text{ GeV}$ G: $N_J \ge 4$, $t_{mod} > 10$, $M_{lb} \leq 175 \text{ GeV}$ H: $N_J \ge 4$, $t_{mod} > 10$, $M_{lb} > 175 \text{ GeV}$

CMS-HIG-18-008

Source	All-hadronic	Semi-leptonic	Di-leptonic
QCD scale cross section	+5.8/-9.2%	+5.8/-9.2%	+5.8/-9.2%
QCD scale acceptance	0.7 - 14.0%	0.8-30.0%	1.0-7.0%
PDF cross section	3.6%	3.6%	3.6%
PDF acceptance	0.6-3.7%	0.5-4.0%	1.0-1.9%
Sample statistics	1.0-10.0%	1.6–11.2%	3.3-26.4%
Luminosity	2.5%	2.5%	2.5%
Trigger	2.0 %	2.0%	0.2-0.5%
Pileup	0.2-2.0%	0.1-2.5%	0.0-3.0%
Jet energy scale	2.8-7.6%	2.8-9.7%	0.0-9.0 %
B-tagging scale factor	0.3-3.3%	1.2-1.6%	0.1 - 1.3%
Lepton efficiency	0.0-0.7 %	3.0-3.1%	3.8-5.5%
Unclustered p _T ^{miss}	0.2–1.8 %	_	0.1 –12.3 %
Top/W tagging	1.0 - 20 %	_	_
<u></u>			

_ '

H -> invisible (VBF & VH & ggH)

arXiv:1809.05937

H -> invisible (VBF & VH & ggH)

Search for dark photons in ZH decays

CM	IS-EXC	7-19-	007
OIV			001

Process	Yields
Data	14
Nonresonant bkg.	2.4 ± 1.1
WZ	8.1 ± 2.0
ZZ	1.5 ± 0.3
$Z\gamma$	0.7 ± 0.7
Other bkg.	0.6 ± 0.3
Total bkg.	13.3 ± 3.8
ZH ₁₂₅ (BR=10%)	$17.9 \pm 1.2 \ (1.42 \pm 0.09 \ \%)$
ZH ₂₀₀ (BR=10%)	$12.3 \pm 0.8 \ (4.32 \pm 0.28 \ \%)$
ZH ₃₀₀ (BR=10%)	$3.9 \pm 0.2 \ (6.80 \pm 0.34 \ \%)$

Reference: Phys. Rev. D. 93. 093011

Lepton flavor violation of Higgs decaying to $\mu \tau$ and $e \tau$

- Use boost decision tree approach to distinguish signal and background
- Misidentified lepton background estimated from data
- Final states with different Higgs decay modes:
 - μτ_h
 - µTe
 - eτh
 - eτ_μ

JHEP 06 (2018) 001

- Presence of LFV Higgs boson couplings would allow $\tau -> \mu$ or $\tau -> e$ through a virtual Higgs boson
- LFV Higgs boson decay to μ e is strongly constrained by the μ —> e γ limit

Lepton flavor violation of Higgs decaying to $\mu \tau$ and $e \tau$

JHEP 06 (2018) 001

• Upper limits on the off-diagonal $\mu\tau$ and $e\tau$ Yukawa couplings at 95% confidence level

BDT fit
$$\sqrt{|Y_{\mu\tau}|^2 + |Y_{\tau\mu}|^2} < 1.43 \times 10^{-3}$$
$$\sqrt{|Y_{e\tau}|^2 + |Y_{\tau e}|^2} < 2.26 \times 10^{-3}$$

