

Miao Hu

on behalf of the CMS Collaboration

EPS, Ghent, Belgium Jul-12th-2019

Introduction

Charged Higgs bosons are predicted in many Standard Model (SM) extensions

- Two-Higgs-doublet model (2HDM) Minimal extension of SM
 - Five physical scalar states: h, H, A, H+, H-
 - Different types based on the couplings of the fermions to the doublet

Model	Type I	Type 2	Lepton-Specific	Flipped	
$\Phi_1 \\ \Phi_2$	$\overset{-}{u,d,\ell}$	$d,\ell \ u$	$\ell \ u,d$	$\overset{d}{u,\ell}$	arXiv:1002.4916

- Coupling to third generation fermions is the strongest in Type2
 -> Sensitive to searches in *tb* and *τν* final states
- Higgs triplet models
 - Charged Higgs bosons appear in Higgs sectors extended by a scalar triplet Φ
 - Couplings to W and Z bosons at tree level
 - Georgi-Machacek model: one real and one complex SU(2) triplet

Overview of Run II Charged Higgs Searches

Шii

80	GeV	160 Ge	V m _{top}	180	GeV	3 TeV
	Light Mass Regime	e l	ntermediate Mass Re	egime	Heavy Mass Regime	m _{H[±]}
·	$H^{\pm} \rightarrow \tau^{\pm} \nu_{\tau} \qquad \begin{array}{c} CMS-HIG-1\\ arXiv:1903.0\\ e \\ 80 - 160 \\ GeV \end{array}$ $H^{\pm} \rightarrow W^{\pm}A \qquad \begin{array}{c} CMS-HIG-1\\ arXiv:1905.0\\ e \\ 100 - 160 \\ GeV \end{array}$ $H^{\pm} \rightarrow W^{\pm}A \qquad \begin{array}{c} CMS-HIG-1\\ arXiv:1905.0\\ e \\ 100 - 160 \\ GeV \end{array}$	8-014 04560 2 8-020 07453 states	H [±] → τ [±] ν _τ CMS-HIC • leptonic + hadr • 160 - 180 GeV • first to probe intermediate margime	G-18-014 onic	• $H^{\pm} \rightarrow \tau^{\pm}\nu_{\tau}$ CMS-HIG-18-014 • leptonic + hadronic • 180 GeV - 3 TeV • $H^{\pm} \rightarrow tb$ • leptonic + ha CMS-PAS-HIG-18-004 CMS-I • 200 GeV - 3 TeV • $200 \text{ GeV} - 3 \text{ TeV}$ • $H^{\pm} \rightarrow W^{\pm}Z$ CMS-HIG-16-027(1 • multi-leptonic CMS-SMP-1 • 200 GeV - 2 TeV • semi-leptonic CMS-SMP-1 • 600 GeV - 2 TeV • $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ • multi-leptonic CMS-SMP-1 • 200 GeV - 1 TeV • semi-leptonic CMS-SMP-1 • 200 GeV - 1 TeV • semi-leptonic CMS-SMP-1 • 200 GeV - 2 TeV	dronic NEW >AS-HIG-18-015 5.2 fb-1) arXiv:1705.02942 8-001 arXiv:1901.04060 8-006 arXiv:1905.07445 8-004 arXiv:1709.05822 8-006
	MIAG	O HU		3	EPS, GHENT, BELGIUM	20190712

CMS

- Targeted $e\mu\mu$ or $\mu\mu\mu$ final states: $t\bar{t} \rightarrow bH^+\bar{b}W^- \rightarrow b\bar{b}W^+W^-A$; $W^+W^- \rightarrow l\nu q\bar{q}'$, $A \rightarrow \mu^+\mu^-$ ($\ell = e, \mu$)
 - Advantages at low p_T: efficient identification, better momentum resolution, pileup robustness
 - First search in this process in any range of m_A/m_{H^\pm} and any H^ \pm production mode
- First model-independent search in this mass region for any decay of A

 $m_A:15 - 75 \text{ GeV}, m_{H^{\pm}}:100 - 160 \text{ GeV}, m_{H^{\pm}} > mA + mW$

- Background Estimation
 - Main background: Jet-induced **nonprompt leptons** (~70%)
 - Estimated with data-driven **tight-to-loose ratio method**
 - Apply extrapolation factors on observed ID composition
 - Factors measured in control regions
 - Others: Prompt trilepton (~ 20%), Conversion (< ~10%), ...
 - Estimated from simulation

$$\begin{split} N_{nonprompt} &= N_{2P1N} + N_{1P2N} \\ &+ N_{3N} \text{ in } SR(N_{3 \text{ tight ID}}) \end{split}$$

(P : Prompt; N: Nonprompt)

 $|A \rightarrow \mu^+ \mu^-$

- Exactly 3 tight leptons (1 opposite-sign muon pair), no additional loose lepton
- Opposite-sign muon pair selection for $\mu^{\pm}\mu^{\pm}\mu^{\mp}$ final state
 - One with different charge $\mu^{\mp} \rightarrow A$
 - The same-sign muon pair $\mu^{\pm}\mu^{\pm}$ (backup p16)
 - The one more likely from A
 - Usually the one with lower p_T
- A narrow resonance in mass windows of $\mathbf{m}_{\mu\mu}$ spectrum is searched
 - Advantage over poor resolution of m_{H[±]}
 - Width(ω) of windows are optimized (in 10 GeV step of m_A) to maximize expected significance
 - $\sqrt{2[(n_s + n_b) \ln(1 + n_s/n_b) n_s]}$ (G. Cowan et al, Ref.[8])
 - Windows are placed in steps of 0.45–1.15 GeV for m_{A}
 - Yields in those windows obtained by interpolation of the yields of simulated samples

<i>m</i> _A range (GeV)	[15, 25)	[25, 35)	[35, 45)	[45, 55)	[55,65)	[65,75)	75
Window index	1–23	24–42	43–59	60–73	74–85	86–94	95
$m_{\rm A}$ step (GeV)	0.45	0.55	0.6	0.75	0.9	1.15	
<i>w</i> (GeV)	[0.5, 0.7)	[0.7, 0.8)	[0.8, 1.0)	[1.0, 1.2)	[1.2, 1.5)	[1.5, 1.8)	1.8

95 mass points in total

$H^{\pm} \rightarrow W^{\pm}A$: Results

CMS-HIG-18-020

- $(m_{H^{\pm}}, m_{A}) = (130, 45)$ GeV, assuming $\sigma(t\bar{t}) = 832$ pb, $\mathcal{B}(t \rightarrow bH^{\pm}) = 0.02, \ \mathcal{B}(H^{\pm} \rightarrow W^{\pm}A) = 1, \ \mathcal{B}(A \rightarrow \mu^{+}\mu^{-}) = 3 \times 10^{-4}$
- Mass window index used (window center in () in GeV unit)
- No statistically significant excess is found in any of the signal mass windows

95(75)

- Left : $m_{H^+} = m_A + 85 \text{ GeV}$
- Right : m_{H^+} = 160 GeV
 - $\mathcal{B}(t \rightarrow bH^{\pm}) > 2.9\%$ is excluded at 95% CL in the entire search region
 - **First** limits on $\mathcal{B}(t \rightarrow bH^{\pm})$ in this decay mode

H± → tb leptonic: Overview CMS-PAS-HIG-18-004

- Highest branching fraction for a large spectrum of $\tan\beta$
- Both single-lepton(11: e or μ) and di-lepton (21: ee, μμ, eμ) final states targeted
- Events categorized by jet and b-jet multiplicity

- Multivariate analysis used: trained against tt
 - Variables sensitive to signal/tt separation (backup p17)
 - **1I : BDT** : Trained in inclusive ≥ 5 jets, ≥ 2 b in total 4 SRs
 - **2I : DNN**: Trained in inclusive ≥ 3 jets, ≥ 1 b regions
- Simultaneously fit performed across all regions
 - **1I : SR:** Output BDT discriminator distributions + **CR:** Event yields
 - 2I: SR + CR: Output DNN discriminator distributions

- Background estimation
 - Dominate background : tt (>~80%) : Split in light (tt + LF) and heavy flavor (tt + b and tt + cc)
 - Light : constrained by simultaneous fit with control regions
 - **Heavy** : left freely float in fit
 - Others electroweak, single-top, ... : Estimated from simulation

7

$H^{\pm} \rightarrow$ tb leptonic: Results

CMS-PAS-HIG-18-004

- No excess observed in all categories
- Upper limits set with **1I + 2I combined**
- Excluded parameter space shown in $m_h^{\text{mod-}}$ and $m_h^{125}(\tilde{\chi})$ scenario
 - High values of $tan\beta \sim 40-60$ is excluded
 - Low values of $\tan\beta \sim 0.4-1.5 \ (0.6-1.5)$ are excluded in the $m_h^{\text{mod}-}(\ m_h^{125}(\tilde{\chi}))$ scenario

MIAO HU

8

H± → tb hadronic: Overview CMS-PAS-HIG-18-015

- Large branching ratio + the whole Higgs can be reconstructed
- Lower $m_{H^{\pm}} \rightarrow all$ the decay products are well separated \rightarrow **resolved**
- $m_{H^{\pm}}$ increases \rightarrow decay products become **boosted** \rightarrow **boosted** W(2 merged jets)/**top**(3 merged jets)

$H^{\pm} \rightarrow$ tb hadronic: Strategy

CMS-PAS-HIG-18-015

H± → tb hadronic: Background Estimation NEW CMS-PAS-HIG-18-015

- Main background: Fake b-jets
 - Measured from data by inverting top- & b- tagging requirement

$$N_{i}^{SR} = \sum_{i} N_{i}^{AR} \cdot \left(\frac{N_{i}^{CR1}}{N_{i}^{CR2}}\right)$$

(*i* runs over p_T and η -bins)

- Others: Genuine-b
 - Estimated from simulation

- Main background: **QCD multijet** (~90%) & tt (~8%)
 - QCD multijet
 - **CR : Mirror** : invert $\tau_{32}(\tau_{21})$ cut
 - control QCD shape
 - Sidebands (below/above)
 - control QCD normalization
 - $t\bar{t}$: **CR: Single Leptonic** : 1 *e*/ μ with 10 < p_T < 35 GeV
- SR in + below + above + CR : mirror in + CR : single leptonic
 used for simultaneously fit

11

$H^{\pm} \rightarrow tb$ hadronic: Results

CMS-PAS-HIG-18-015

NEV

CMS

- Better limits are chosen between the two
 - $m_{H^{\pm}} \le 800 \text{GeV}$: resolved
 - $m_{H^{\pm}} > 800 GeV : boosted$
- No excess observed across all mass region
- Excluded parameter space shown
 - $m_h^{\text{mod-}}$ scenario : $\tan\beta$ values from 0.25 to 0.86 are excluded
 - $m_h^{125}(\tilde{\chi})$ scenario : $\tan\beta$ values from 0.45 to 0.86 are excluded

MIAO HU

12

- Combination of **H**[±] → **tb leptonic** and **hadronic**
 - 11 final state dominants across entire mass range
 - 21 final state is sensitive at lower mass region, ~ 20% gain
 - Hadronic final state is comparable as 11 at higher mass region, ~30% gain
- Excluded parameter space of both $H^{\pm} \rightarrow tb$ and $H^{\pm} \rightarrow \tau^{\pm}\nu_{\tau}$ displayed is also shown

l'liī

Summary

• CMS has a comprehensive charged Higgs boson searches program

- Latest analyses in 2HDM are presented in details
 - $H^{\pm} \rightarrow W^{\pm}A$ and $H^{\pm} \rightarrow tb$ leptonic + hadronic
 - No excesses observed in a variety of searches
 - 95% CL upper limits are set
 - Interpretation and exclusion in MSSM scenarios are shown
- Also fresh results in Higgs triplet models
 - $H^{\pm} \rightarrow W^{\pm}Z$ and $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ semi-leptonic (backup p18,19)
 - Model independent limits are set
 - First model dependent limits in s_H - $m(H_5)$ plane above 1 TeV
- Currently all analyses are done on 2016 dataset (35.9 fb⁻¹)
- More to come with a luminosity of 137.1 fb⁻¹ in total from the full Run2 dataset

Thanks!

BACK UP

Input variables for $H^{\pm} \rightarrow tb$ leptonic multivariate analysis

CMS-PAS-HIG-18-004

ℓ and 2ℓ	H_{T}	Scalar sum of the jet transverse momenta
	p_{Tb}	Largest transverse momentum among the b-tagged jets
	$p_{\rm T}^{\rm miss}$	Missing transverse momentum
	$\min m(\ell, \mathbf{b})$	Minimum invariant mass between the lepton and the b-tagged jet
	$\max \Delta \eta(\mathbf{b}, \mathbf{b})$	Maximum pseudorapidity separation between b-tagged jet pairs
	$\min \Delta R(\mathbf{b},\mathbf{b})$	Minimum separation between b-tagged jet pairs
	$p_{\rm T}$ -ave CSV	$p_{\rm T}$ weighted average of the combined secondary vertex discrimina-
		tor of the non-b-tagged jets
	FW_2	Second Fox–Wolfram moment
	centrality	Ratio of the sum of the transverse momentum and the total energy
		of all jets
	m_{jjj}	Invariant mass of the jet system composed by the first three jets
\mathcal{J}		ranked in $p_{\rm T}$
-	$m_{\rm T}(\ell, \vec{p}_{\rm T}^{\rm miss})$	Transverse mass of the system constituted by the lepton and the
		$\vec{p}_{\mathrm{T}}^{\mathrm{miss}}$
	$\Delta R(\ell, bb)$	Distance between b-tagged jet pair with the smallest ΔR separation
		and the lepton
	$ave\Delta R(b,b)$	Average separation between b-tagged jet pairs
	$N_{ m jets}$	Number of selected jets
	$N_{b m jets}$	Number of selected b-tagged jets
2ℓ	$\Delta R(\ell, \mathbf{b})$	Distance between the lepton and the b-tagged jet with largest trans-
		verse momenta
	$p_{\mathrm{T}\ell}$	Largest transverse momentum between the leptons
	$\frac{p_{\mathrm{T}\ell_1} - p_{\mathrm{T}\ell_2}}{p_{\mathrm{T}\ell_1} + p_{\mathrm{T}\ell_2}}$	Lepton $p_{\rm T}$ asymmetry
	$m(\ell, \mathbf{b})$	Invariant mass of the lepton and b-tagged jet with the largest trans-
		verse momentum (top quark candidate)
	$m_{ m T}^{ m min}$	min $[m_T(b, p_{T\ell 1} + \vec{p}_T^{\text{miss}}), m_T(b, p_{T\ell 2} + \vec{p}_T^{\text{miss}})]$. The smallest of the
		transverse masses constructed with the leading b-tagged jet and
		each of the two W boson hypotheses

Ші

Searches in W±Z(H±)/W±W±(H±±) final states: semi-leptonic

- In Georgi-Machacek model (Higgs triplet model), singly (doubly) charged Higgs bosons are produced via VBF that decay to W and Z bosons (same-sign W boson pairs)
- Semi-leptonic decay of WV targeted
 - $H^{\pm} \rightarrow W^{\pm}Z \rightarrow \ell \nu q q (or q q \ell \ell)$
 - $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm} \rightarrow \ell \nu q q$
- Leptonic W is reconstructed from solving the the $p_{z^{\nu}}$,
 - Solution closest to $p_{z^{\boldsymbol{\ell}}}$ is picked
- Hadronic W/Z reconstructed as one large radius jet using jet substructure

18

MIAO HU

Searches in W±Z(H±)/W±W±(H±±) final states: semi-leptonic

- Place model independent limits on singly and doubly charged Higgs cross section
- Combine the 3 results and produce the model dependent limits in s_H -m plane

CMS

H[±]→W[±]Z→q<u>q</u>'II

1000

- H[±] and H^{±±} in the GM model are degenerate in mass (*m*(H₅)) at tree level
- Coupling depends on $m(H_5)$ and the parameter s_H

35.9 fb⁻¹ (13 TeV)

Observed

Expected

68% expected

95% expected

m(H[±]) (GeV)

- s_{H}^{2} characterizes the fraction of the W boson mass squared generated by the vacuum expectation value of the triplet fields
- Blue shaded area covers the theoretically disallowed parameter space

 $\sigma_{VBF}(H^{\pm}) \times B(H^{\pm} \rightarrow W^{\pm}Z)$ (fb)

2000

10³

10²

10

• The first limits above 1 TeV

CMS

10³

10²

10

→W[±]Z→qqh

1000

 $\sigma_{VBF}(H^{\pm}) \times B(H^{\pm} \rightarrow W^{\pm}Z)$ (fb)

MIAO HU

1500

19

1500

35.9 fb⁻¹ (13 TeV)

Observed

Expected

68% expected

95% expected

m(H[±]) (GeV)