Higgs Physics at the LH=C \& FCC-sh

Uta Klein

LH_{C}

LTVERMTYOOL
on behalf of

the LHeC/FCC-eh Study Group

$\pm \mathrm{He}_{\mathrm{C}}$

톤드늘

electrons for eh : ERL-e + HL-LHC [FCC-hh]

- Two 802 MHz Electron LINACs + 2x3 return arcs: using energy recovery in same structure: sustainable technology with power consumption < 100 MW instead of 1 GW for a conventional LINAC.
- Beam dump: no radioactive waste!
- high electron polarisation of $\mathbf{8 0}-\mathbf{9 0 \%}$

Concurrent eh and HL-LHC operation!

Same Twin Collider idea holds for HE-LHC and FCC-hh

ep peak lumi $10^{34} \mathrm{~cm} \mathrm{~s}^{-2} \mathrm{~s}^{-1}$ (based on existing HL-LHC design)

- Operation scenario: F. Bodry et al. CERN-ACC-2018-0037 [arxiv:1810.13022]

■ LHeC [FCC-eh] L= 1000 [2000] fb ${ }^{-1}$ total collected in $\mathbf{1 0}$ [20] years
■ 'No’ pile-up: <0.1@LHeC; ~1@FCCeh
ERL design detailed in LHeC CDR: J. Phys. G: Nucl. Part. Phys. 39 (2012) 075001 [arXiv:1206.2913] and updates at recent LHeC/FCC-eh workshops Sep-17@CERN and June-18@Orsay.

SM Higgs Production in ep

Total cross section [fb]
(LO QCD CTEQ6L1 $\mathrm{M}_{\mathrm{H}}=125 \mathrm{GeV}$)

c.m.s. energy	1.3 TeV LHeC	3.5 TeV FCC-eh
CC DIS	109	560
NC DIS	21	127
P=-80\%		
CC DIS	196	1008
NC DIS	25	148

In ep, direction of quark (FS) is well defined.
-Scale dependencies of the LO calculations are in the range of 5-10\%. Tests done with MG5 and CompHep.

- NLO QCD corrections are small, but shape distortions of kinematic distributions up to 20\%. QED corrections up to 5\%.
[J. Blumlein, G.J. van Oldenborgh , R. Ruckl, Nucl.Phys.B395:3559,1993]
[B.Jager, arXiv:1001.3789]

SM Higgs Production in ep

Total cross section [fb]
(LO QCD CTEQ6L1 $\mathrm{M}_{\mathrm{H}}=125 \mathrm{GeV}$)

c.m.s. energy	1.3 TeV LHeC	3.5 TeV FCC-eh
CC DIS	109	560
NC DIS	21	127
P=-80\% CC DIS	196	1008
NC DIS	25	148

DIS Kinematics at FCC-eh @ $\sqrt{ }$ s=3.5 TeV

MadGraph scale: p_{T} of leading jet

$$
\begin{aligned}
& q=\left(k-k^{\prime}\right), q^{2}=-Q^{2} \\
& s=(k+P)^{2} \\
& (x P+q)^{2}=m^{2}, P^{2}=M_{p}^{2} \\
& \text { if }\left(Q^{2} \gg x^{2} M_{p}^{2}, m^{2}\right): \\
& q^{2}+2 x P q=0 \\
& \begin{array}{ll}
x=\frac{Q^{2}}{2 P q} & \text { relation to pp LO QCD } \\
Q^{2}=s x y & \mathbf{x}_{1,2}=(\mathbf{M} / \mathrm{vs}) \exp (\pm y)
\end{array} \\
& \mathbf{Q}^{2} \sim \mathbf{M}^{2}
\end{aligned}
$$

η Distributions at FCC-eh

Higgs decay particles (here to WW), struck quark and scattered lepton are well separated in detector acceptance.

Analysis Framework and Detector

Event generation

- SM or BSM production
- CC \& NC DIS background by MadGraph5/MadEvent
- Fragmentation
- Hadronization
by PYTHIA (modified for ep)

Fast detector simulation
 by Delphes
 \rightarrow test of LHeC detector

S/B analysis \rightarrow cuts or BDT

- Calculate cross section with tree-level Feynman diagrams (any UFO) using pT of scattered quark as scale (CDR ŝ) for ep processes with MadGraph5 ; parton-level x-check CompHep
■ Fragmentation \& hadronisation uses ep-customised Pythia.
- Delphes 'detector'
\rightarrow displaced vertices and signed impact parameter distributions \rightarrow studied for LHeC and FCC-eh SM Higgs; and for extrapolations [PGS for CDR and until 2014]
- 'Standard' GPD LHC-style detectors used and further studied based on optimising Higgs measurements, i.e. vertex resolution a la ATLAS IBL, excellent hadronic and elmag resolutions using 'best' state-of-the art detector technologies (no R\&D 'needed')
- Analysis requirements fed back to ep detector design \rightarrow

Higgs in eh: cut based results

Masahiro Tanaka, Masahiro Kuze, Tokyo Tech 2017

Example of samples: Unpolarised $(P=0)$ samples $E_{e}=60 \mathrm{GeV}$

$E_{p}=7 \mathrm{TeV}$	LHeC			$E_{p}=50 \mathrm{TeV}$	FCC		
	σ (pb)	Nsample	$\mathrm{N} / \sigma\left(\mathrm{fb}^{-1}\right)$		σ (pb)	Nsample	$\mathrm{N} / \sigma\left(\mathrm{fb}^{-1}\right)$
Signal CC:H->bb	0.113	0.2M	1760	Signal CC:H->bb	0.467	0.15 M	321
CCijij no top	4.5	2.6 M	570	CCijij no top	21.2	1.95 M	92
CC single top	0.77	0.9M	1160	CC single top	9.75	1.05M	108
CC Z	0.52	0.6M	1160	CC Z	1.6	0.15 M	94
NC Z	0.13	0.15M	1140	NC Z	0.33	0.15 M	455
PAiii	41	14M	350	PAiii	262	12.9M	49

Delphes ep-style detector + flat parton-level b-tagging for $|\eta|<3.0$
conservative HFL tagging: b: 60\%, c: 10\%, udsg: 1\% CAL coverage $|\eta|<5$ LHeC [<6 FCC-eh]

Mass of 2 b-jets after event selection

$\mathrm{H} \rightarrow \mathrm{bb}$:
 $\mathrm{S} / \mathrm{N}>1$ using conservative light misID and simple cuts \rightarrow confirmed earlier \& post CDR studies

$100 \mathrm{fb}^{-1}$
~ 1 year of data

Note: plenty of single Z, W and top in ep

Higgs@LHeC: see also CDR \& PRD.D82:016009,2010

Hunting for Precision Hbb

Events

'Worst' case scenario plot : Photoproduction background (PHP) is assumed to be 100\%! PHP update: Modelled via Weiszaecker-Williams and cross-checked with Pythia.
\rightarrow addition of small angle electron taggers will reduce PHP to ~1-2\%

Higgs in ep - clean S / B, no pile-up

\rightarrow further improvements using BDT realistic HFL tagging \& BDT

Uta Klein \& Daniel Hampson

\& Izzy Harris BSc 2017

Assuming ATLAS light
jet misID efficiencies
\rightarrow Main systematic checks: variations of background contribution and tagging efficiencies

Branching for invisible Higgs

Satoshi Kawaguchi, Masahiro Kuze Tokyo Tech
Values given in case of 2σ and $\mathrm{L}=1 \mathrm{ab}^{-1}$

Delphes detectors	LHeC [HE-LHeC] $1.3 \quad[1.8 \mathrm{TeV}]$	FCC-eh 3.5 TeV
LHC-style	$4.7 \%[3.2 \%]$	1.9%
First 'ep-style'	5.7%	2.6%
+BDT Optimisation	$5.5 \%\left(4.5 \%^{*}\right)$	$1.7 \%\left(2.1 \%^{*}\right)$

LHeC parton-level, cut based <6\% [Y.-L.Tang et al. arXiv: 1508.01095]

PORTAL to Dark Matter ?
\checkmark Uses ZZH fusion process to estimate prospects of Higgs to invisible decay using standard cut/BDT analysis techniques
\checkmark Full MG5+Delphes analyses, done for 3 c.m.s. energies \rightarrow very encouraging for a measurement of the branching of Higgs to invisible in ep down to 5% [1.2\%] for 1 [2] ab ${ }^{-1}$ for LHeC [FCC-eh]
$\checkmark \quad$ A lot of checks done: We also checked LHeC $\leftarrow \rightarrow$ FCC-he scaling with the corresponding cross sections (* results in table) : Downscaling FCC-he simulation results to LHeC would give 4.5%, while up-scaling of LHeC simulation to FCC-he would result in $2.1 \% \rightarrow$ all well within uncertainties of projections of $\sim 25 \%$
\Rightarrow further detector and analysis details have certainly an impact on results \rightarrow enhance potential further

SM Higgs Signal Strengths in ep

Charged Currents: ep \rightarrow vHX \quad Neutral Currents: ep \rightarrow eHX
\rightarrow NC and CC DIS together over-constrain Higgs couplings in a combined SM fit.
$E_{e}=60 \mathrm{GeV} \operatorname{LHeC} E_{p}=7 \mathrm{TeV} L=1 \mathrm{ab}^{-1} \mathrm{HE}-\mathrm{LHC} \mathrm{E}_{\mathrm{p}}=14 \mathrm{TeV} \mathrm{L}=2 \mathrm{ab}^{-1} \quad \mathrm{FCC}: E_{p}=50 \mathrm{TeV} \mathrm{L}=2 \mathrm{ab}^{-1}$

... and Consistency Checks of EW Theory

\rightarrow similar tests possible using various cms energy CLIC machines, however, in ep, we could perform them with one machine

$$
\frac{\sigma_{W W \rightarrow H \rightarrow i i}}{\sigma_{Z Z \rightarrow H \rightarrow i i}}=\frac{\kappa_{W}^{2}}{\kappa_{Z}^{2}}
$$

$$
\frac{\kappa_{W}}{\kappa_{Z}}=\cos ^{2} \theta_{W}=1-\sin ^{2} \theta_{W}
$$

\rightarrow Dominated by $\mathrm{H} \rightarrow$ bb decay channel precision
> Very interesting consistency check of EW theory

$>$ Values for $\cos ^{2} \Theta$ given here are the PDG value as central value 0.777 and uncertainty from ep Higgs measurement prospects

LHeC:	$\pm \mathbf{0 . 0 1 0}$
HE-LHeC	± 0.006

FCC-eh ± 0.004

Another nice test: How does the Higgs couple to $3^{\text {rd }}$ and $2^{\text {nd }}$ generation quark?
b is down-type and c is up-type

$$
\frac{\sigma_{W W \rightarrow H \rightarrow c \bar{c}}}{\sigma_{W W \rightarrow H \rightarrow b \bar{b}}}=\frac{\kappa_{c}^{2}}{\kappa_{b}^{2}}
$$

Model-dependent Coupling Fit

LH_{C} SM Higgs Couplings \& $\delta \boldsymbol{\sigma}_{\text {Higgs }}(\mathrm{pp})$

Update of LHeC ES submission CERN-ACC-2018-0084
4.2. Determination of Higgs Couplings in $p p$ and $e p$

HL-LH(e)C ensures centre of Higgs physics stays at CERN in the thirties. High precision

Figure 4: PRELIMINARY Uncertainties of coupling constant determinations using the kappa framework at the LHC in the six most frequent decay channels from the combination of ATLAS and CMS prospects at HL-LHC (blue, $3 \mathrm{ab}^{-1}$), the LHeC (gold, $1 \mathrm{ab}^{-1}$) and the combination of $p p$ and $e e$ (dark blue).

Stand-alone ep к Coupling Fits

\rightarrow Assuming SM branching fractions weighted by the measured k values, and $\Gamma_{\text {md }}$ (c.f. CLIC model-dependent method)

Note: also H in ePb

Figure 4.12: Determination of the κ scaling parameter uncertainties, from a joint SM fit of CC and NC signal strength results for the FCC-eh (green, $2 \mathrm{ab}^{-1}$), the HE LHeC (brown, $2 \mathrm{ab}^{-1}$) and LHeC (blue, $1 \mathrm{ab}^{-1}$).

Higgs @ HL-LHC, ee and FCC-eh

within kappa framework; statistical errors only
FCC-eh

Collider	HL-LHC	ILC_{250}	CLIC_{380}	FCC-ee			FCC-eh
Luminosity (ab^{-1})	3	2	0.5	$\begin{array}{r} \hline \hline 5 @ \\ 240 \mathrm{GeV} \end{array}$	$\begin{gathered} +1.5 @ \\ 365 \mathrm{GeV} \end{gathered}$	$\begin{array}{r} + \\ \text { HL-LHC } \end{array}$	2
Years	25	15	7	3	+4	-	20
$\delta \Gamma_{\mathrm{H}} / \Gamma_{\mathrm{H}}(\%)$	SM	3.8	6.3	2.7	1.3	1.1	SM
$\delta g_{\mathrm{HZZ}} / g_{\mathrm{HZZ}}(\%)$	1.3	0.35	0.80	0.2	0.17	0.16	0.43
$\delta g_{\text {HWW }} / g_{\text {HWW }}(\%)$	1.4	1.7	1.3	1.3	0.43	0.40	0.26
$\delta g_{\text {Hbb }} / g_{\text {Hbb }}(\%)$	2.9	1.8	2.8	1.3	0.61	0.55	0.74
$\delta g_{\text {Hcc }} / g_{\text {Hcc }}$ (\%)	SM	2.3	6.8	1.7	1.21	1.18	1.35
$\delta g_{\mathrm{Hgg}} / g_{\mathrm{Hgg}}(\%)$	1.8	2.2	3.8	1.6	1.01	0.83	1.17
$\delta g_{\text {H } \tau \tau} / g_{\text {H } \tau \tau}(\%)$	1.7	1.9	4.2	1.4	0.74	0.64	1.10
$\delta g_{\text {H}} \mu / g_{\text {H }}{ }^{\text {(\%) }}$	4.4	13	n.a.	10.1	9.0	3.9	n.a.
$\delta g_{\mathrm{H} \gamma \gamma} / g_{\mathrm{H} \gamma \gamma}(\%)$	1.6	6.4	n.a.	4.8	3.9	1.1	2.3
$\delta g_{\mathrm{Htt}} / g_{\mathrm{Htt}}(\%)$	2.5	-	-	-	-	2.4	ttH 1.7
$\mathrm{BR}_{\mathrm{EXO}}$ (\%)	SM	< 1.8	<3.0	< 1.2	< 1.0	< 1.0	n.a.

Combine the complementary measurements for best physics outcome!

Top Yukawa Coupling @ LHeC

B.Coleppa, M.Kumar, S.Kumar, B.Mellado, PLB770 (2017) 335
$\mathrm{SM}: \quad \mathcal{L}_{\text {Yukawa }}=-\frac{m_{t}}{v} \bar{t} t h-\frac{m_{b}}{v} \bar{b} b h$,

BSM: Introduce phases of top-Higgs and bottom-Higgs couplings

$$
\begin{aligned}
\mathcal{L}= & -\frac{m_{t}}{v} \bar{t}\left[\kappa \cos \zeta_{t}+i \gamma_{5} \sin \zeta_{t}\right] t h \\
& -\frac{m_{b}}{v} \bar{b}\left[\cos \zeta_{b}+i \gamma_{5} \sin \zeta_{b}\right] b h .
\end{aligned}
$$

Enhancement of the DIS cross-section as a function of phase

Observe/Exclude non-zero phase to better than 4σ
\rightarrow With Zero Phase: Measure ttH coupling with 17% accuracy at LHeC \rightarrow extrapolation to FCC-eh: ttH to 1.7%

Double Higgs Production

Encouraging FCC-eh cut-based study; full Delphes-detector simulation; conservative HFL tagging

Probing anomalous couplings within Higgs EFT: limits are obtained by scanning one of the non-BSM coupling while keeping other couplings to their SM values.

Here $g_{(\cdots)}^{(i)}, i=1,2$, and $\tilde{g}_{(\cdots)}$ are real coefficients corresponding to the CP-even and CP-odd couplings respectively, of the $h h h, h W W$ and $h h W W$ anomalous vertices.

Wrap Up

- LHeC [FCC-eh] could measure the dominant Higgs couplings, including ttH, to 0.6-17 [0.2-1.7] \% precision [CC+NC DIS, no pile-up, clean final state..]
\Rightarrow LHeC would add charm to HL-LHC
- Striking synergy of ep (>~1 TeV) and ee (250-350 GeV) and pp for Higgs coupling measurements!
- ep would empower the physics potential of pp (non-resonant searches, EW, Higgs..) through high precision QCD measurements: flavour separated PDFs at N^{3} LO, α_{s} to per mille ...
- Higgs measurements in ep are self consistent experimentally and theoretically based on DIS cross sections with very small systematic uncertainties
- Combining pp with ep, a very powerful Higgs facility can be established at the HL-LHC already in the 30ties or later at the FCC-hh.
[1] S. P. Das, J. Hernandez-Sanchez, S. Moretti and A. Rosado, Prospects for discovering a light
charged Higgs boson within the NMSSM at the FCC-h collider, 1806 . 08361 .
[21 A. Caliskan and S. O. Kara, Single production of the excited electrons at the future
131 H. Hesari, H. Khanpour and M. Mohammadi Najafabadi, Study of Higgs Effective Couplings
at Electron-Proton Colliders, Phys. Rev. D97 (2018) O95041, [1805. o4697].
14] L. Duarte, C. Zapata and O. A. S. Sompayo, Angular and polar ization trails from effective

interactions of Majorana neutrinos at the LHeC, Eur. Phys. | interactions of |
| :--- |
| [1802. 076201$]$ |

(5) C. Han, R. Li, R.-Q. Pan and K. Wang, Searching for the light Higgsinos at the CERN
LTeC 1802.03679 .

16] C. Azuelos, H. Sun and K. Wang, Search for singly charged Higgs bosons in vector-boson
scattering at ep colliders. Phys. Rev. $\mathbf{D 9 7}$ (2018) 116005 , [1712. $\mathbf{0 7 5 0 5]}$.
scattering at ep colliders, Phys. Rev. D97 (2018) 116005, 11712.07505$]$.

10] H. Sun, X. Lho, W. Wei and T. Liu, Searching for the doubly-charged Higgs bosons in the
Georgi-Machacek model at the electron-proton colliders, Phys. Reve D96 (2017) O95003, Georgi-Machac
[1710.06284].
[11] $\begin{aligned} & \text { Y. O. Günaydin, M. Sahin and S. Sultansoy, Resonance Production of Excited } u \text {-quark at the } \\ & \text { FCC Based } \gamma \text { p Colliders, 1707. }\end{aligned}$ (0056.
[12] A. Caliskan, Excited neutrino search potential of the FCC-based $\begin{aligned} & \text { Adu. High Energy Phys. } 2017 \text { (2017) 4726050, } 11706 \text {. O9797]. }\end{aligned}$
alt -09797.
channel at the LHeC, Phys. Lett. B771 (2017) 106-112.
14] I. Turk Cakir, A. Yilmaz, H. Denizli, A. Senol, H. Karadoniz and O. Cakir, Probing the
Anooratous FCNC Couplings at Large Hadron Electron Collider, Advo. Hight Energy Phys. Anomalous FCNCC Couplings at Large
2017 (2017) 1572053 , 17050.05419 .
15] Y-B. Liu, Search for single production of vector- Like top partners at the Large Hadron
Electron Collider, Nuch Phys. $\mathbf{B 9 2 3}(2017) 312$ 323, 11704.02059 .
[16] Y.-.. Zhang, L. Han and Y.-B. Liu, Single production of the top partner in the $T \rightarrow t Z$
channel at the LHeC, Phys. Lett. B768 (2017) 241-247.
[17] X. Wang, H. Sun and X. LLo, Searches for the Anomalous FCNC Top-Higgs Couplings with
Polarized Electron Beam at the LHeC, Adv. High Energy Phys. 2017 (2017) 4693213, [1703.02691].
[18] H.-Y. Bi, R-Y. Zhang, X-G. Wu, W.-G. Ma, X.-X. Li and S. Owusu, Photoprod
doubhy heavy baryon at the LHeC, Phys. Rev. D95 (2017) 074020, 11702.07181$]$.
[19] B. Coleppa, M. Kumar, S. Kumar and B. Mellado, Measuring CP nature of top-Higgs
couphings tathe future Large Hadron electron collider, Phys. Lett. B770 (2017) 335-341,
1170
${ }^{[20]}$ H. Denizlii, A. Senol, A. Yilmaza, I. Turk Cakir, H. Karadeniz and O. Cakir, Top quark FCNC

21] H.-Y. Bi, R.-Y. Zhang, H.-Y. Han, Y. Jiang and X.-G. Wu, Photoproduction of the Be
122] S. P. Das and M. Nowakowski, Light neutral CP-even Higgs boson within Next-to-Minimal
Supersymmetric Stand and model ((NMSSM) at the Large Hadron electron Collider (LHeC), Supersymmetric Standard model (NMSSM) at

[24] S. Antusch, E. Cazzato and O. Fischer, Sterile neutrinino searches at future $e^{-} e^{+}$, pp, and e
colliders, Int. J. Mod. Phys. A 32 (2017) 1750078, [1612.02728].
1251 S Liders, int. J. Mood. Phys. A32 (2015) 1750078, 1012.02728 .
[25] S. Liu, Y-L. Tang, C. Zhang and S.-h. Zhu, Exotic Higgs Decay $h \rightarrow \phi \phi \rightarrow 4 b$ at the LHeC
Eur. Phys. J. C77 (2017) 457, [1608. o8458].
${ }^{26]}$ A. Ozansoy, V. Arr and V. Cetinkaya, Search for excited spin-S/2 neutrinos at LHeC, Adv.
[27] G. R. Boroun, B. Rezaei and S. Heidari, Nuclear Longitudiral structure function in eA
processes at the LHeC, Int. J. Mod. Phys. A \mathbf{l}
[28] Y. C. Acar, U. Kaya, B. B. Oner and S. Sultansoy, Color octet electron search potential of
[28] Y. C. Acar, U. Kaya, B. B. Oner and S. Sultansoy, Color octet electron search potentiat
FCC based e-p colliders, J. Phys. C44 (2017) O4505, |1605.080281.
[20] S. Mondal and S. K. Rai, Probing the Heavy Neutrinos of Inverse Seesaw Model at the

30] M. Lindner, F. S. Queiroz, W. Rodejohanu and C. E. Yaguna, Left-Riqght Symmetry and
Lepton Number Violation at the Large Hadron Electron Collider, JHEP $\mathbf{0 6}$ (2016) 140 , Lepton Numb
li604. O85965|.
31] H. Sun and X. Wang, Exploring the Anomalous Top-Higgs FC
proton colliders, Eur. Phys. J. C78 (2018) 281, 11602 . 046701.
${ }^{[32]}$ S. Mondal and S. K. Rai, Polarized window for left-right symmetry and a right-handed
neutrino at the Large Hadron-Electron Collider, Phys. Rev. D93 (2016) 011702, [1510.08632].
33] G. R. Boroun, Top reduced cross section behavior at the LHeC kinematic range, Chin. Phy C41 (2017) 013104, [1510.02914].
34] M. Kumar, X. Ruan, R. Islam, A. S. Cornell, M. Klein, U. Klein et al., Probing anomalous couplings using di-Higgs production in electron-proton collisions, Phys. Lett. B764 (2017) 247-253, [1509.04016].
[35] Y.-L. Tang, C. Zhang and S.-h. Zhu, Invisible Higgs Decay at the LHeC, Phys. Rev. D94 (2016) 011702, [1508.01095].
[36] W. Liu, H. Sun, X. Wang and X. Luo, Probing the anomalous FCNC top-Higgs Yukawa couplings at the Large Hadron Electron Collider, Phys. Rev. D92 (2015) 074015 , [1507.03264].
37] G. R. Boroun, Geometrical scaling behavior of the top structure functions ratio at the LHeC, Phys. Lett. B744 (2015) 142-145, [1503. 01590].
[38] S. P. Das, J. Hernández-Sánchez, S. Moretti, A. Rosado and R. Xoxocotzi, Flavor violating signatures of lighter and heavier Higgs bosons within the Two Higgs Doublet Model Type-III at the LHeC, Phys. Rev. D94 (2016) 055003, [1503.01464].
[39] L. Duarte, G. A. González-Sprinberg and O. A. Sampayo, Majorana neutrinos production at LHeC in an effective approach, Phys. Rev. D91 (2015) 053007, [1412.1433]
$40]$ I. A. Sarmiento-Alvarado, A. O. Bouzas and F. Larios, Analysis of top-quark charged-current coupling at the LHeC, J. Phys. G42 (2015) 085001, [1412.6679]
[41] G. R. Boroun, Top structure function at the LHeC, Phys. Lett. B741 (2015) 197-201 [1411.6492].
$[42]$ I. T. Cakir, O. Cakir, A. Senol and A. T. Tasci, Search for anomalous $W W \gamma$ and $W W Z$ couplings with polarized e-beam at the LHeC, Acta Phys. Polon. B45 (2014) 1947, [1406.7696].
[43] R.-Y. Zhang, H. Wei, L. Han and W.-G. Ma, Probing L-violating coupling via sbottom resonance production at the LHeC, Mod. Phys. Lett. A29 (2014) 1450029, [1401.4266].
44] J. T. Amaral, V. P. Goncalves and M. S. Kugeratski, Probing gluon number fluctuation effects in future electron-hadron colliders, Nucl. Phys. A930 (2014) 104-116, [1312.4741].
[45] X.-P. Li, L. Guo, W.-G. Ma, R.-Y. Zhang, L. Han and M. Song, Single (anti-)top quark production in association with a lightest neutralino at the LHeC, Phys. Rev. D88 (2013) 014023, [1307. 2308].
[46] S. Dutta, A. Goyal, M. Kumar and B. Mellado, Measuring anomalous Wtb couplings at e^{-p} collider, Eur. Phys. J. C75 (2015) 577, [1307.1688]
$47]$ I. T. Cakir, O. Cakir, A. Senol and A. T. Tasci, Probing Anomalous HZZ Couplings at the LHeC, Mod. Phys. Lett. A28 (2013) 1350142, [1304.3616].
[48] S. Kuday, Resonant Production of Sbottom via RPV Couplings at the LHeC, J. Korean Phys. Soc. 64 (2014) 1783-1787, [1304.2124].
[49] M. Sahin, Resonant production of spin-3/2 color octet electron at the LHeC, Acta Phys. Polon. B45 (2014) 1811, [1302.5747].
[50] I. T. Cakir, A. Senol and A. T. Tasci, Associated Production of Single Top Quark and W-boson Through Anomalous Couplings at LHeC based γ p Colliders, Mod. Phys. Lett. A29 (2014) 1450021, [1301.2617].

50 journal papers on BSM with LHeC/Fcc-eh in recent years

Additional Sources \& Thanks to

- Much more material can be found here: LHeC and FCC-eh Workshop, September 2017, CERN https://indico.cern.ch/event/639067/
- The LHeC/FCC-eh study group, http://Ihec.web.cern.ch
- "On the Relation of the LHeC and the LHC" [arXiv:1211.5102]
- $1^{\text {st }}$ FCC Physics Workshop, 16.1.-20.1.2017, CERNhttps://indico.cern.ch/event/550509/
- Before April 2018: Higgs branching fractions and uncertainties taken from https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageBR2014
- Update used from April 2018https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageBR
- FCC Week 2018, Amsterdam, https://indico.cern.ch/event/656491/
- FCC to EU Strategy CERN-ACC-2018-0056
- LHeC to EU Strategy CERN-ACC-2018-0084

Special thanks to my colleagues in the LHeC/FCC-eh study group and
to Jorge de Blas for the discussion of model-dependent coupling fits.

Additional material

Detector for LHeC/HE-LHC/FCC-eh
1562

,

All Numbers [cm]
\& P.Kostka et al

Length x Diameter: LHeC ($13.3 \times 9 \mathrm{~m}^{2}$) HE-LHC (15.6×10.4) FCCeh $(19 \times 12) \mathrm{m}^{2}$ ATLAS (45 x 25) CMS (21 x 15): [LHeC < CMS, FCC-eh ~ CMS size] If CERN decides that the HE LHC comes, the LHeC detector should anticipate that

Higgs in ee vs ep

ee Dominant Higgs productions:

ee

VBF Higgs Production in ep (top) and pp (bottom)

ep: Higgs production in ep comes uniquely from either CC or NC DIS via VBF

Clean bb final state, $\mathrm{S} / \mathrm{B}>1$
e-h Cross Calibration for Precision ep
Clean, precise reconstruction and easy distinction of ZZH and WWH without pile-up:
<0.1@LHeCup to 1@FCCeh events
pp: Higgs production in pp comes predominantly ($\sim 80 \%$) from $\mathrm{gg} \rightarrow \mathrm{H}$: high rates crucial for rare decays
 FCC-hh: pile-up 500-1000 (!)
S/B very small for bb
Final precision in pp needs
accurate N^{3} LO PDFs \& α_{s}

SM Higgs in ep

Higgs in eA @FCC-ePb
$\sigma_{\text {Higgs }}[\mathrm{fb}]$
eff. 'Ep’=19.7 TeV

E_{e} $[G e V]$	$P_{e}=0$	-0.8
20	105	190
30	153	276
50	242	436
60	282	507

LHeC / FCC-eh: Sizeable Higgs rates in charged current (CC) DIS for L=100-1000 fb-1

Further Estimates of Higgs Prospects

- Use LO Higgs cross sections $\boldsymbol{\sigma}_{\mathbf{H}}$ for $\mathbf{M}_{\mathbf{H}}=\mathbf{1 2 5} \mathbf{G e V}$, in [fb], and branching fractions $\mathrm{BR}(\mathrm{H} \rightarrow \mathrm{XX})$ from Higgs Cross Section Handbook
- Apply further branching, $\mathrm{BR}(\mathrm{X} \rightarrow \mathrm{FS}$) in case e.g. of $\mathrm{W} \rightarrow 2$ jets and use acceptance (Acc) estimates based on MG5, for further decay
- Use reconstruction efficiencies, ε, achieved at LHC Run-1, see e.g. prospect calculations explored in arXiv:1511.05170
- Use fully simulated LHeC BDT $\mathrm{H} \rightarrow \mathrm{bb}$ and $\mathrm{H} \rightarrow \mathrm{cc} \&$ FCC-eh $\mathrm{H} \rightarrow$ WW* and exotic Higgs search results as baseline for S/B ranges; use fully simulated cut-based FCC-eh \& LHeC H \rightarrow bb results for further bench-marking
- Use fully simulated Higgs to invisible for 3 c.m.s. scenarios as guidance for extrapolation uncertainty
- Estimate HIggs events per decay channel for certain Luminosity in [fb ${ }^{-1}$] and cross section in [fb]

$$
N=\sigma_{H} \bullet B R(H \rightarrow X X) \bullet B R(X \rightarrow F S) \bullet L
$$

- Calculate uncertainties of signal strengths w.r.t. SM expectation

$$
\mu=\frac{\sigma}{\sigma_{S M}}
$$

$$
\frac{\delta \mu}{\mu}=\frac{1}{\sqrt{N}} \cdot f \quad \text { with } \quad f=\sqrt{\frac{1+1 /(S / B)}{A c c} \cdot \varepsilon}
$$

Electroweak precision observables at FCC eh

- Electroweak precision measurements at FCC-eh

Precision measurements of couplings to light quark families

Talk by D Britzger, FCC Physics Week 2018

Observable	Uncertainty	(Relative uncertainty)
$\boldsymbol{g}_{\boldsymbol{V}}^{\boldsymbol{u}}$	0.0022	(1.1%)
$\boldsymbol{g}_{\boldsymbol{A}}^{\boldsymbol{u}}$	0.0031	(0.6%)
$\boldsymbol{g}_{\boldsymbol{V}}^{\boldsymbol{u}}$	0.0049	(1.4%)
$\boldsymbol{g}_{\boldsymbol{A}}^{\boldsymbol{d}}$	0.0049	(0.97%)

- Global fit to electroweak precision measurements at FCC-ee + FCC-eh

Talk by J deBlas FCC Week 2018

Double Higgs Production at FCC-eh

"Probing anomalous couplings using di-Higgs production in electronproton collisions" by Mukesh Kumar, Xifeng Ruan, Rashidul Islam, Alan S. Cornell, Max Klein, Uta Klein, Bruce Mellado,
Physics Letters B 764 (2017) 247-253 [arXiv:1509.04016]

$$
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\mathcal{L}_{h h h}^{(3)}+\mathcal{L}_{h W W}^{(3)}+\mathcal{L}_{h h W W}^{(4)}
$$

FCC-eh
SM($\mathrm{P}=-0.8$)
$\sigma(H H)=430 a b$ in VBF!

$$
\begin{gather*}
\mathcal{L}_{h h h}^{(3)}=\frac{m_{h}^{2}}{2 v}\left(1-g_{h h h}^{(1)}\right) h^{3}+\frac{1}{2 v} g_{h h h}^{(2)} h \partial_{\mu} h \partial^{\mu} h, \tag{2}\\
\mathcal{L}_{h W W}^{(3)}=-g\left[\frac{g_{h W W}^{(1)}}{2 m_{W}} W^{\mu \nu} W_{\mu \nu}^{\dagger} h+\frac{g_{h W W}^{(2)}}{m_{W}}\left(W^{\nu} \partial^{\mu} W_{\mu \nu}^{\dagger} h+\text { h.c }\right)\right. \\
 \tag{3}\\
\left.\quad+\frac{\tilde{g}_{h W W}}{2 m_{W}} W^{\mu \nu} \widetilde{W}_{\mu \nu}^{\dagger} h\right], \\
\begin{array}{c}
\mathcal{L}_{h h W W}^{(4)}=-g^{2}\left[\frac{g_{h h W W}^{(1)}}{4 m_{W}^{2}} W^{\mu \nu} W_{\mu \nu}^{\dagger} h^{2}+\frac{g_{h h W}^{(2)}}{2 m_{W}^{2}}\left(W^{\nu} \partial^{\mu} W_{\mu \nu}^{\dagger} h^{2}+\text { h.c }\right)\right. \\
\\
\left.\quad+\frac{\tilde{g}_{h h W W}}{4 m_{W}^{2}} W^{\mu \nu} \widetilde{W}_{\mu \nu}^{\dagger} h^{2}\right] .
\end{array} \tag{4}
\end{gather*}
$$

\rightarrow All other g coefficients are anomalous couplings to the hhh, hWW and hhWW
anomalous vertices
\rightarrow those are $\mathbf{0}$ in SM

Effective Vertices

$$
\begin{align*}
& \Gamma_{h h h}=-6 \lambda v\left[g_{h h h}^{(1)}+\frac{g_{h h h}^{(2)}}{3 m_{h}^{2}}\left(p_{1} \cdot p_{2}+p_{2} \cdot p_{3}+p_{3} \cdot p_{1}\right)\right] \text {, } \tag{6}\\
& \Gamma_{h W^{-} W^{+}}=g m_{W}\left[\left\{1+\frac{g_{h W W}^{(1)}}{m_{W}^{2}} p_{2} \cdot p_{3}+\frac{g_{h W W}^{(2)}}{m_{W}^{2}}\left(p_{2}^{2}+p_{3}^{2}\right)\right\} \eta^{\mu_{2} \mu_{3}}\right. \\
& -\frac{g_{h W W}^{(1)}}{m_{W}^{2}} p_{2}^{\mu_{3}} p_{3}^{\mu_{2}}-\frac{g_{h W W}^{(2)}}{m_{W}^{2}}\left(p_{2}^{\mu_{2}} p_{2}^{\mu_{3}}+p_{3}^{\mu_{2}} p_{3}^{\mu_{3}}\right) \\
& \left.-\mathrm{i} \frac{\tilde{g}_{h W W}}{m_{W}^{2}} \epsilon_{\mu_{2} \mu_{3} \mu \nu} p_{2}^{\mu} p_{3}^{v}\right], \tag{7}
\end{align*}
$$

$1,2,3=$ h, W-, W+
$\Gamma_{h h W^{-} W^{+}}=g^{2}\left[\left\{\frac{1}{2}+\frac{g_{h h W W}^{(1)}}{m_{W}^{2}} p_{3} \cdot p_{4}+\frac{g_{h h W W}^{(2)}}{m_{W}^{2}}\left(p_{3}^{2}+p_{4}^{2}\right)\right\} \eta^{\mu_{3} \mu_{4}}\right.$
$-\frac{g_{h h W}^{(1)}}{m_{W}^{2}} p_{3}^{\mu_{4}} p_{4}^{\mu_{3}}-\frac{g_{h h W W}^{(2)}}{m_{W}^{2}}\left(p_{3}^{\mu_{3}} p_{3}^{\mu_{4}}+p_{4}^{\mu_{3}} p_{4}^{\mu_{4}}\right)$
$\left.-\mathrm{i} \frac{\tilde{g}_{h h w}}{m_{W}^{2}} \epsilon_{\mu_{3} \mu_{4} \mu \nu} p_{3}^{\mu} p_{4}^{\nu}\right]$.

Note the dependence on momenta in non-SM vertices. This induces significant impact on scattering kinematics.

HH@FCC-eh: Azimuthal Angle Distributions

$\rightarrow \Delta \Phi_{\text {Etmiss,jet }}$ between missing transverse energy and forward jet, at Delphes detector-level, including background : bbbbj, bbjjj, Z(bb)h(bb)j, ttj, h(bb)bbj
\rightarrow Signal: $\mathrm{hh} \rightarrow$ bbbb decays motivated by $\mathrm{h} \rightarrow \mathrm{bb}$ studies.

\rightarrow normalised DIS cross sections are sensitive to non-BSM vertices
\rightarrow initial study published for this novel $\Delta \Phi_{\text {Etmiss,jet }}$ variable
\rightarrow potential for a deeper analysis and interpretation

Event Selection using $\mathbf{h} \rightarrow \mathbf{b b}$

Pe=-0.8, Anti-kt jets R=0.4, Etmiss>40 GeV, n(fwd jet)>5,
$90<\mathrm{m}_{\mathrm{bb}}(1), \mathrm{m}_{\mathrm{bb}}(2)<125 \mathrm{GeV}, \mathrm{m}(4 \mathrm{~b})>290 \mathrm{GeV}$
b-tagging for $|\eta|<5$ assumed to be 70% with misidentifications of 10% for charm and 1% for light quarks /gluons
Delphes detector-level

Cuts / Samples	Signal	$4 b+$ jets	$2 b+$ jets	Top	$Z Z$	$b \bar{b} H$	ZH	Total Bkg	Significance
Initial	2.00×10^{3}	3.21×10^{7}	2.32×10^{9}	7.42×10^{6}	7.70×10^{3}	1.94×10^{4}	6.97×10^{3}	2.36×10^{9}	0.04
At least $4 b+1 j$	3.11×10^{2}	7.08×10^{4}	2.56×10^{4}	9.87×10^{3}	7.00×10^{2}	6.32×10^{2}	7.23×10^{2}	1.08×10^{5}	0.94
Lepton rejection $p_{T}^{\ell}>10 \mathrm{GeV}$	3.11×10^{2}	5.95×10^{4}	9.94×10^{3}	6.44×10^{3}	6.92×10^{2}	2.26×10^{2}	7.16×10^{2}	7.75×10^{4}	1.12
Forward jet $\eta_{J}>4.0$	233	13007.30	2151.15	307.67	381.04	46.82	503.22	16397.19	1.82
$\mathbb{E}_{T}>40 \mathrm{GeV}$	155	963.20	129.38	85.81	342.18	19.11	388.25	1927.93	3.48
$\Delta \phi_{\boldsymbol{E}_{T j}}>0.4$	133	439.79	61.80	63.99	287.10	14.53	337.14	1204.35	3.76
$m_{b b}^{1} \in[95,125], m_{b b}^{2} \in[90,125]$	54.5	28.69	5.89	6.68	5.14	1.42	17.41	65.23	6.04
$m_{4 b}>290 \mathrm{GeV}$	49.2	10.98	1.74	2.90	1.39	1.21	11.01	29.23	7.51

Table 2: A summary table of event selections to optimise the signal with respect to the backgrounds in terms of the weights at 10 ab ${ }^{-1}$. In the first column the selection criteria are given as described in the text. The second column contains the weights of the signal process $p e^{-} \rightarrow h h j v_{e}$, where both the Higgs bosons decay to $b \bar{b}$ pair. In the next columns the sum of weights of all individual prominent backgrounds in charged current, neutral current and photo-production are given with each selection, whereas in the penultimate column all backgrounds' weights are added. The significance is calculated at each stage of the optimised selection criteria using the formula $\mathcal{S}=\sqrt{2[(S+B) \log (1+S / B)-S]}$ where S and B are the expected signal and background yields at a luminosity of $10 \mathrm{ab}^{-1}$ respectively. This optimisation has been performed for $E_{e}=60 \mathrm{GeV}$ and $E_{n}=50 \mathrm{TeV}$.

$$
\mathcal{S}=\sqrt{2[(S+B) \log (1+S / B)-S]} .
$$

Exotic Higgs Searches in ep

Exotic Higgs @ FCC-eh

Uta Klein \& Michael O'Keefe MPHYS 2017

MG5 model and LHeC results
[arXiv:1608.0845 8]

Very promising first results to discover an exotic Higgs decay into two new light scalars at FCC-eh down to a BR of 1% for $1 \mathrm{ab}^{-1}$. A BR of 10\% could be discovered within 1 year ($100 \mathrm{fb}^{-1}$).

BDT Analysis @ BR=10\%
 Delphes-detctor level with b-tag $|\eta|<2.5$

η Distributions at FCC-eh

Scale: p_{T} of leading jet

Exotic Higgs decay particles (2 light scalars of 20 GeV), struck quark and scattered lepton are well separated in detector acceptance
[Master thesis by Sergio Mandelli, Liverpool 2013]

