Soft QCD and Central Exclusive Production at LHCb

Stephen Farry

on behalf of the LHCb collaboration

EPS-HEP 2019, Ghent

12 July 2019

UNIVERSITY OF LIVERPOOL

Outline

covered in this talk		
	Collision Energy	Reference
Bose-Einstein correlation of same-sign charged pions	7 TeV	[<i>JHEP</i> (2017) 12:p. 025]
Total inelastic cross-section	13 TeV	[<i>JHEP</i> (2018) 06:p. 100]
Exclusive J/ψ and $\psi(2S)$ production	13 TeV	[<i>JHEP</i> (2018) 10:p. 167]

LHCb

optimised to study decays of heavy flavour hadrons

- fully instrumented between $2.0 \le \eta \le 5.0$
- partial coverage between $-3.5 \leq \eta \leq -1.5$ (Velo)
- extended coverage at high rapidities in Run 2 (HeRSChel)
- excellent tracking, vertexing and PID capabilities
- ${\sc l}$ average pile-up \sim 2

<i>pp</i> datasets			Interaction Region	
Year 2011 2012 2015-2018	Energy 7 TeV 8 TeV 13 TeV	Lumi 1.0 fb $^{-1}$ 2.0 fb $^{-1}$ 6.0 fb $^{-1}$		

- correlations exist between indistinguishable particles emitted from the same emitter volume
- useful tool to probe the spatial and temporal structure of the hadron emission volume
- Bose-Einstein Correlations (BEC) measured using same-sign pairs of pions in pp collisions at LHCb at 7 TeV

$$C_2(Q) = rac{N^{data}(Q)}{N^{
m ref}(Q)}, Q = \sqrt{-(q_1 - q_2)^2} = \sqrt{M^2 - 4m^2}$$

 $N^{\text{data}}(Q)$ - same-sign pion pairs in data

 $N^{\mathrm{ref}}(Q)$ - same-sign pairs in reference sample without BEC effect

- event mixed sample used as reference sample
 - o pions from different events in data with same multiplicity mixed

correlation function described using Levy paramaterisation

$$C_2(Q) = N(1 + \lambda e^{-RQ}) \times (1 + \delta \cdot Q)$$

R - radius, λ - chaoticity parameter, N - normalisation, δ - long range correlations

construct double ratio of correlation function in data and MC

$$r_d = C_2(Q)^{data}/C_2(Q)^{MC}$$

BEC - Double Ratio

(

reduce possible imperfections in the construction of the reference sample

- eliminate second order effects to large extent
- correct for long range correlations
- parameters extracted from fit to r_d in three bins of event activity

BEC - Fits

fit performed to double ratio in three bins of event activity

 $\,$ systematic uncertainty (\sim 10%) dominated by generator tunings and pile-up effects

BEC - Results

- source size increases with activity, while chaoticity decreases
- comparable trend with previous observations at LEP and the LHC
- parameters in forward region slightly lower than ATLAS [Eur. Phys. J. (2015) C75:p. 466], however comparison not straightforward
- full 3D analysis required to perform more detailed comparison

Measurement of the inelastic cross-section at 13 TeV

- the inelastic pp cross-section is a fundamental quantity in the phenomenology of high energy hadronic interactions
- measured in the forward region at LHCb using 10.7 nb⁻¹ of data collected in 2015 at 13 TeV
 - o unbiased triggers rejecting backgrounds from previous crossing
- Events selected containing at least one long-lived charged particle (mean lifetime > 30 ps)

• $p > 2 \, \text{GeV}, 2 < \eta < 5$

cross-section in forward acceptance defined as

 $\sigma_{\rm acc} = \frac{(\mu - \mu_{bkg})N_{evt}}{\mathcal{L}_{tot}}$ $N_{\rm evt} - \text{total number of recorded events}$ $\mu - \mu_{bkg} - \text{average number of interactions per crossing}$ $\sigma_{acc}(\sqrt{s} = 13 \text{ TeV}) = 62.2 \pm 2.5(\text{exp})\text{mb}$

extrapolation to full phase space performed using simulation

$$\begin{split} \sigma_{\text{inel}} &= \textit{F}_{\mathsf{T}} \cdot \sigma_{\text{acc.}} = \sum_{X} \sigma_{X} \text{ , } X \in \{\textit{ND, SD, DD}\}\\ \textit{F}_{\mathsf{T}} &= \frac{1}{\sum_{X} f_{X} v_{X}} \end{split}$$

- *f_X* fraction of inelastic cross-section obtained with MC using data constraint
- v_X visible interactions inside acceptance

Inelastic Cross-section - Results

Exclusive J/ψ and $\psi(2S)$ production

- Central Exclusive Production exchange of neutral, colourless particles protons remain intact
- powerful tool to probe the pomeron and constrain the gluon PDF
 - exclusive J/ψ , Υ production cross-section $\propto (xg(x, \bar{Q}^2))^2$
- experimental signature events with just two muon tracks in the final state
- LHCb is ideal environment to perform measurements
 - relatively low number of pile-up collisions
 - $\circ~$ backward VELO coverage can be exploited to identify rapidity gap

HeRSCheL

- High Rapidity Shower Counters for LHCb (HeRSCheL) installed ahead of Run-II
- Extends LHCb coverage into very forward region
 - o Detect showers from high rapidity particles interacting with the beam pipe
 - Reject inelastic backgrounds where proton disassociates
- observable χ^2_{HRC} quantifies the activity above noise, including correlations between counters

- two reconstructed muons in event
 - no additional tracks or energy in event
- low activity in HeRSCheL, $p_{\rm T}^2 < 0.8~{\rm GeV}^2$
- inelastic background determined using fit to p²_T
 - o shapes determined using data-driven methods

CEP J/ψ and $\psi(2s)$ - results

good agreement with next-to-leading-order JMRT prediction

- measured cross-section can be related to photoproduction cross-section $\sigma_{\gamma p} \rightarrow J \psi p$ and compared to other experiments
 - W invariant mass of proton-photon system
- J/ψ results show deviation from pure power-law extrapolation of H1 data
- $\psi(2S)$ results are consistent within statistics

Conclusion

- Bose-Einstein correlation of same-sign charged pions
 - same trends observed as other experiments
 - full 3D analysis required to perform a detailed comparison
- Inelastic pp cross section
 - \circ improved result at $\sqrt{s} = 7$ TeV
 - $\circ\;$ total inelastic cross section at $\sqrt{s}=13$ TeV compatible with other experiments
- exclusive J/ψ and $\psi(2S)$ production cross-sections measured in pp data with $\sqrt{s} = 13TeV$
 - o better understanding of the backgrounds with respect to previous measurements thanks to HeRSCheL

backup

CEP J/ψ and $\psi(2s)$ - results

 $\sigma_{J/\psi \to \mu\mu}$ (2.0 < η_{μ} < 4.5) = 300 ± 16 ± 10 ± 16

 $\sigma_{\psi(2s)\to\mu\mu}(2.0 < \eta_{\mu} < 4.5) = 10.2 \pm 1.0 \pm 0.3 \pm 0.4$

good agreement with next-to-leading-order JMRT prediction

$$\sigma_{\rho\rho\to\rho\psi\rho} = r(W_+)k_+ \frac{\mathrm{d}n}{\mathrm{d}k_+} \sigma_{\gamma\rho\to\psi\rho}(W_+) + r(W_-)k_- \frac{\mathrm{d}n}{\mathrm{d}k_-} \sigma_{\gamma\rho\to\psi\rho}(W_-).$$

• measured cross-section can be related to photoproduction cross-section $\sigma_{\gamma p} \rightarrow J \psi p$ and compared to other experiments

- J/ψ results show deviation from pure power-law extrapolation of H1 data
- $\psi(2S)$ results are consistent within statistics