Searches for Dark Mater at LHC in forward proton mode

Marek Taševský

Institute of Physics of the Czech Academy of Sciences, Prague

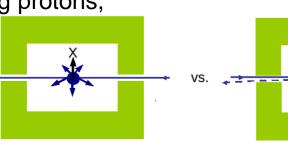
[based on JHEP 1904(2019)010, arXiv:1812.04886[hep-ph]]

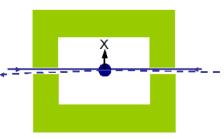
On behalf of Misha Ryskin, Valery Khoze and Lucian Harland-Lang

Motivation

☐ GOAL: detect DM in central exclusive production (CEP),

e.g. $\gamma\gamma \rightarrow 2$ sleptons $\rightarrow 2$ invisible neutralinos (DM candidate) + dilepton

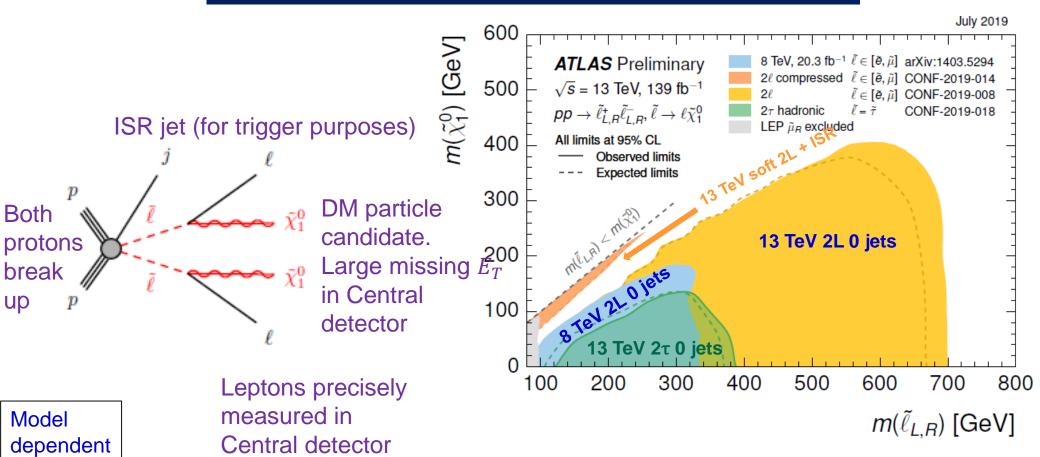

 \Box CEP: pp \rightarrow p + X + p


Diffractive: color-singlet exchange between colliding protons,

with large rapidity gaps ('+') in central detector

 Exclusive: protons lose energy but remain intact and are measured in Forward Proton Detector(FPD)

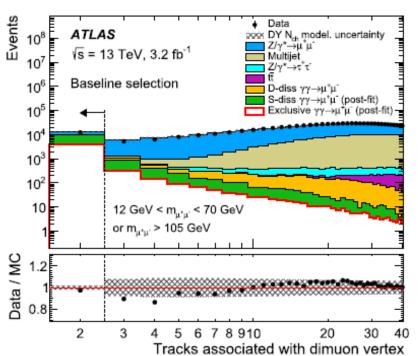
• Central: system of mass M_X produced at interact point and its decay products detected in central det.


☐ QED mechanism has 2 advantages:

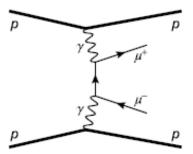
- 1) Experiment: pp \rightarrow p(FPD) + ll + low missing E_T + p(FPD) (measure precisely mass in FPD)
- 2) Theory: Model independence in production stage
- □ Focus on compressed mass scenario: $\Delta M = M_{\tilde{l}} M_{\tilde{\chi}_1^0}$ small.
- $< m_{ll} > \sim \Delta M \rightarrow \text{aim is to keep} < m_{ll} > \text{low. Studied ranges: } M_{\tilde{l}} = 120\text{-}300 \text{ GeV}, \Delta M = 10,20 \text{ GeV}$
- Motivated by cosmology, naturalness and (g-2) considerations
- **□** Profit from published analyses:
- 1) Inclusive DM searches with soft leptons at high pile-up; 2) Exclusive leptons at high pile-up

Inclusive slepton searches

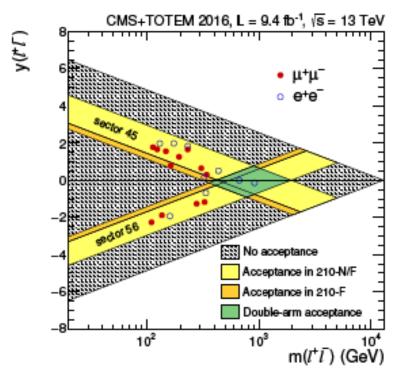
Slepton: spin=0 partner of lepton
- decays to fermionic DM + leptons with BR=100%



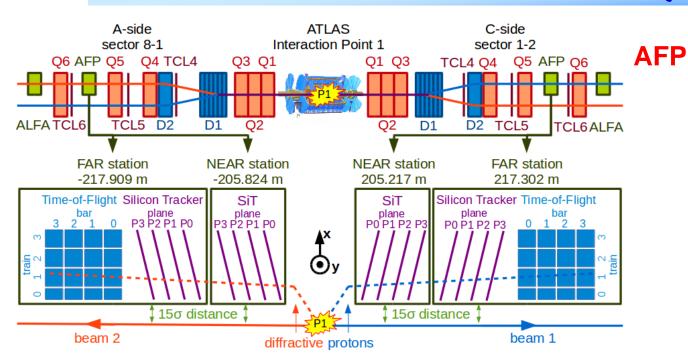
ATLAS SUSY Summary plot

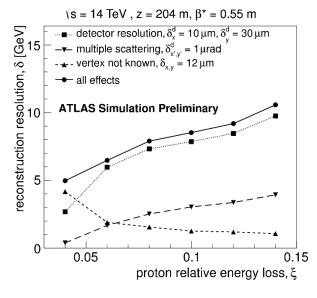


Exclusive dileptons at high Pile-up

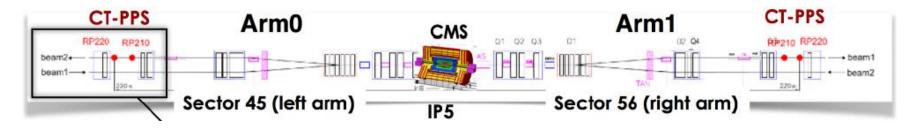

- Exclusive di-muons
- Without proton tagging

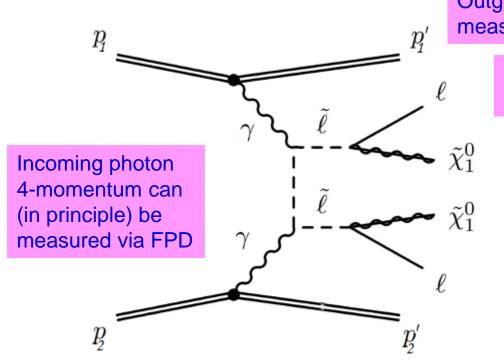
[Phys. Lett. B777 (2018) 303]


- Exclusive di-leptons
- With proton tagging



[JHEP1807 (2018) 153]


Forward Proton detectors (FPDs) at LHC


Excellent ξ (mass) resolution [AFP TDR, CERN-LHCC-2015-009]

CT-PPS

Advantage of exclusivity & compressed mass

Outgoing proton 4-momentum measured in FPD

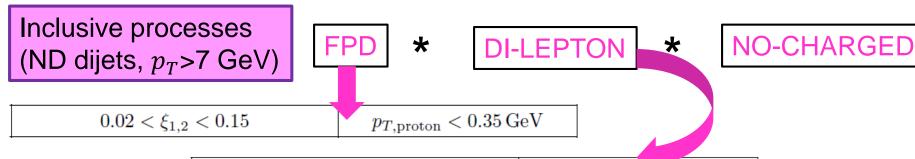
Lepton 4-momentum measured in Central detector

$$\xi_i = 1 - \frac{E_{p_i'}}{E_{p_i}}, i=1,2$$

measured precisely in FPD

4-momentum of system of 2 DM particles could be constrained from photon & lepton 4-momenta

FPD measures precisely mass of central system. If mass splitting $M_{\tilde{l}}-M_{\widetilde{\chi}_1^0}$ low \to FPD can give quite a precise hint about $2m_{DM}$

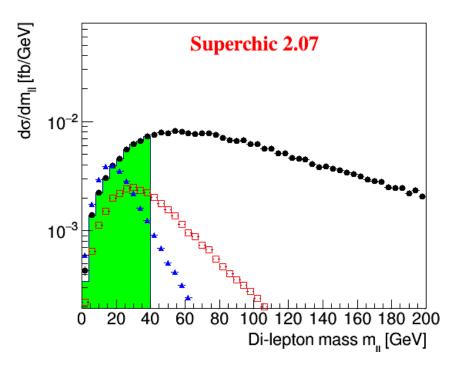

DM searches with forward protons at LHC

Model independent

Procedure

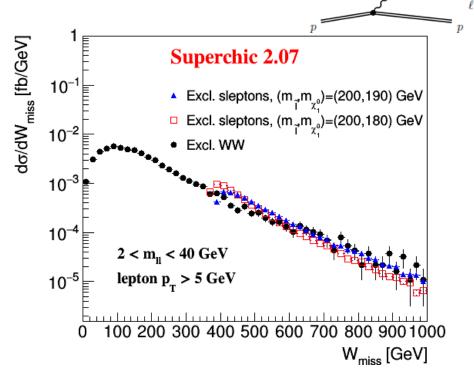
- □ Effective signal cross-section very low → high luminosities needed
- **□** Backgrounds:
- 1) Exclusive WW
- 2) Semi-exclusive dilepton production with proton from dissociation giving hit in FPD
- 3) Pile-up background: overlay of inclusive non-diffractive event in central detector with unrelated soft diffractive protons in FPD acceptance
- \Box Huge suppression factors needed for inclusive backgrounds (~10¹⁴) \rightarrow sufficient statistics cannot be generated in reasonable time \rightarrow cuts factorized into cut classes

- All exclusive BG: Superchic
- Inclusive BG: PYTHIA/HERWIG


$5 < p_{T,l_1,l_2} < 40 \text{GeV}$	$ \eta_{l_1,l_2} < 2.5 \ (4.0)$
Aco $\equiv 1 - \Delta \phi_{l_1 l_2} /\pi > 0.13 \ (0.095)$	$2 < m_{l_1 l_2} < 40 \mathrm{GeV}$
$\Delta R(l_1, l_2) > 0.3$	$ \eta_{l_1} - \eta_{l_2} < 2.3$
$\bar{\eta} \equiv \eta_{l_1} + \eta_{l_2} /2 < 1.0$	$ p_{Tl_1} - p_{Tl_2} > 1.5 \text{GeV}$
$W_{\rm miss} > 200{ m GeV}$	

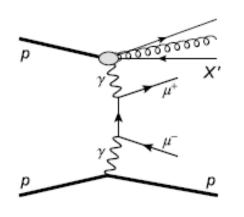
FZU Institute of Physics of the Czech Academy of Sciences

Exclusive WW

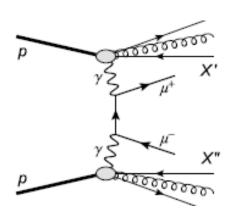

Exclusive WW gives the same dilepton final state as signal but much larger M_W - $M_{\mathbf{v}}$ difference:

SIGNAL: $W_{miss} > 2M_{\chi^0}$

Exclusive WW background significantly suppressed by cuts on leptons and W_{miss}



Another approach: max. kinematically allowed $M_{l^{\sim}}$ and $M_{\chi^{\sim}}$ [Eur.phys. J. C72(2012)1969]: (also arXiv: 1811.06465[hep-ph]) only mild improvement seen


Single & Double-Dissociation background

Pure exclusive: $m_{ll} > 10$ GeV: $\sigma = 8.4$ pb (Superchic). Low $m_{ll} \rightarrow \xi$ outside FPD acceptance

BUT: protons from dissoc. system may end up in FPD. What probability? $0.02 < \xi < 0.15 \& p_{T,proton} < 0.35 \text{ GeV}$: 0.40% (PYTHIA 8.2 SD), 0.46% (triple Regge)

Not small enough since $\sigma_{ll}^{SD}\gg\sigma_{ll}^{CEP}$ in relevant mass regions.

How to reduce this BG?

Difference in signal and SD/DD topologies: Events with SD/DD have larger proton p_T , dilepton system has larger η ,

smaller p_T and smaller acoplanarity.

 Impact of cuts evaluated using approximate modification to Superchic to include proton dissociation

PILE-UP Rejection using ToF

 \Box What is the rate of fake double-tagged (DT) events with protons coming from PU in the acceptance 0.02 < ξ <0.15 and $p_{T,proton}$ < 0.35 GeV?

Most dangerous combination: 2x soft SD events + hard-scale di-lepton event. Time-of-flight detectors (ToF) crucial: reject events where z_{vtx} (ToF) not matching z_{vtx} (central)

- 1) Single-Tag probability to find a PU proton in FPD acceptance: 0.8%(PY8.2) / 1.3% (HW7.1)
- 2) Rate of fake Double-Tagged events, assuming
- bunch longitudinal size: 7.5 cm
- time resolution: $\sigma_t = 10 \text{ ps}$
- time window: $2\sigma_t$

$ullet$ unite window. $oldsymbol{zo}_t$	
Fake Double-Tag P _{FPD} , 10 ps (2 σ cut)	Fa ToF
ple-tagg	
Fake Double-Tag	ToF
P _{FPD} , 10 ps (2 σ cut)	
10^{-5} $10^{$	
N. CDU. I DV	
FZU Institute of Physics No. of PU events per BX of the Czech Academy of Sciences Marek Taševský	

	Рутніа 8.2		HERW	7.1 Tig 7.1
	$\langle \mu \rangle_{PU}$		$\langle \mu \rangle$	PU
	10	50	10	50
Fake DT	0.0048	0.105	0.0123	0.222
ToF rejection	18.3	13.7	17.5	11.3
P_{FPD}	2.6×10^{-4}	7.6×10^{-3}	7.0×10^{-4}	2.0×10^{-2}

ToF rejection depends on ToF resolution and size of PU

Minimum Bias

events, MPI on

No-charged cuts

- ☐ Inclusive dilepton production has typically many additional charged particles associated with the primary vertex, while for CEP these are absent
- ☐ No charged cuts: based on
- 1) efficiency of vetoing additional vertices and tracks within 1mm of the primary vertex in pile-up for signal $P_{z-veto}(\mu=10)=0.84$; $P_{z-veto}(\mu=50)=0.48$ (Delphes fast simulation)
- 2) rejecting additional tracks in the central detector at zero pile-up for backgrounds $P_{gap}(\mu=0)$

$$P_{no-charged}(\mu=10,50) = \ P_{gap}(\mu=0) * \ P_{z-veto}(\mu=10,50)$$

Leads to sizable background rejection:

$P_{ m no-ch}$	$\langle \mu \rangle_{PU}$		
	0	10	50
CEP $c\bar{c}$	3.5×10^{-3}	2.9×10^{-3}	1.7×10^{-3}
CEP gg	3.3×10^{-5}	2.8×10^{-5}	1.6×10^{-5}
Incl. jets $(\eta < 2.5)$	$5.2(2.0) \times 10^{-7}$	$4.4(1.7) \times 10^{-7}$	$2.5(1.0) \times 10^{-7}$
Incl. jets $(\eta < 4.0)$	$1.7(0.7) \times 10^{-7}$	$1.4(0.6) \times 10^{-7}$	$0.8(0.3) \times 10^{-7}$

ATLAS and CMS tracker upgrades: $|\eta| < 4.0$.

PYTHIA8.2(HERWIG7.1)

Integrated event yields for $L=300fb^{-1}$

 $|\eta| < 2.5$

 $|\eta| < 4.0$

Event yields /	$\langle \mu \rangle_{PU}$		
$\mathcal{L} = 300 \text{ fb}^{-1}$	0	10	50
Excl. sleptons	0.6-3.9	0.5—3.3	0.3—1.9
Excl. l^+l^-	1.4	1.2	0.7
Excl. K^+K^-	~ 0	~ 0	~ 0
Excl. W^+W^-	0.7	0.6	0.3
Excl. $c\bar{c}$	~ 0	~ 0	~ 0
Excl. gg	~ 0	~ 0	~ 0
Incl. ND jets	$\sim 0 (\sim 0)$	0.1(0.1)	1.8(2.4)

Event yields /	$\langle \mu \rangle_{PU}$		
$\mathcal{L} = 300 \text{ fb}^{-1}$	0	10	50
Excl. sleptons	0.7—4.3	0.6—3.6	0.3—2.1
Excl. l^+l^-	1.1	0.9	0.5
Excl. K^+K^-	~ 0	~ 0	~ 0
Excl. W^+W^-	0.6	0.5	0.3
Excl. $c\bar{c}$	~ 0	~ 0	~ 0
Excl. gg	~ 0	~ 0	~ 0
Incl. ND jets	$\sim 0 (\sim 0)$	0.03(0.05)	0.6(0.7)

Slepton range corresponds to slepton mass range studied: X(300 GeV) – Y(120 GeV)

Improvements:

- Cut on the distance between sec. and prim. vertex (or on the pseudo-proper lifetime)
- Improve ToF resolution (ToF rejection increases linearly with σ_t decreasing)
- Radiation-hard ZDC with timing information to suppress proton-dissociation background
- Add timing info in Central detector: included in HL-LHC A+C upgrades for $2.5 < |\eta| < 4.0$
- Timing detector also in $|\eta|$ <2.5 envisaged in CMS (MTD = MIP Timing Detector)

SUMMARY

- DM search via exclusive production of sleptons: $pp \rightarrow p(FPD) + 2 \text{ soft leptons} + \text{very low missing } E_T + p(FPD)$
- $M_{l^{\sim}} = 120-300 \text{ GeV } \& \Delta M = 10, 20 \text{ GeV}$
- Detailed study of all relevant backgrounds + pile-up up to μ=50
- \square Forward proton detectors with good timing resolution ($\sigma_t \sim 10 \text{ps}$) vital
- □ S=B~2 per 300fb-1 with current techniques and resolutions. Many potential avenues for improvement.
- Suitable for HL-LHC: larger significances expected but additional timing information from Central detector needed
- Ongoing work: more complete treatment of proton dissociation in SC

BACKUP SLIDES

Motivation

- $\neg \gamma \gamma \rightarrow 2$ sleptons $\rightarrow 2$ invisible neutralinos (DM candidate) + dilepton
- ☐ QED mechanism has 2 advantages:
- 1) Experimental:

 $pp \rightarrow p(FPD) + ll + low missing E_T + p(FPD)$ (measure precisely mass in FPD)

2) Theoretical:

Model independence in production stage

□ Focus on compressed mass scenario: Keep Δ M = $M_{\tilde{l}} - M_{\tilde{\chi}_{1}^{0}}$ small.

 $< m_{ll} > \sim \Delta M \rightarrow \text{aim is to keep } < m_{ll} > \text{low}$

 Motivated by cosmology, naturalness and (g-2) considerations Aim Searches for exclusive soft dilepton and very low missing E_T in high Pileup with forward proton detectors

Inclusive

DM searches with soft dilepton & missing E_T in high Pile-up (ATLAS,CMS)

Knowledge about soft leptons in high PU

dilepton
in high
Pile-up
(ATLAS,
CMS+Totem)

Knowledge about exclusivity

Measurement

of exclusive

exclusivity in high PU

IIICIUSIVE

Pillars = published analyses

 $\gamma\gamma
ightarrow 2$ sleptons ightarrow 2 invisible neutralinos (DM candidate) + dilepton QED mechanism has 2 advantages:

) Experimental: $p \rightarrow p(FPD) + 11 + low missing E_T + p(FPD)$ measure precisely mass in FPD)

Processes and MC event generators

☐ All exclusive processes: Superchic 2.07

QED: Exclusive sleptons (slepton masses 120-300 GeV, mass splitting 10 and 20 GeV, σ : max 2 fb) Exclusive $\mu^+\mu^-$, e^+e^- , $\tau^+\tau^-$ (M_X >10 GeV, p_T > 3 GeV, σ ~ 8.4 pb) Exclusive W^+W^- (M_X >160 GeV, fully-leptonic decays, σ ~ 1.0 fb)

QCD (CEP): Exclusive
$$K^+K^-$$
 ($M_X > 10$ GeV, $p_T > 4$ GeV, $\sigma \sim 1.3$ fb) Exclusive $c\bar{c}$ ($M_X > 10$ GeV, $p_T > 5$ GeV, $|y_X| < 3.0$: $\sigma \sim 3$ nb) Exclusive gg ($M_X > 10$ GeV, $p_T > 7$ GeV, $|y_X| < 3.0$: $\sigma \sim 2$ µb)

For exclusive processes with too low generated masses to produce protons in FPD acceptance ($\mu^+\mu^-$, e^+e^- , $\tau^+\tau^-$, $c\overline{c}$, gg) \rightarrow consider:

- Single-proton dissociation
- Double-proton dissociation
- □ Inclusive ND dijets: $p_T > 7$ GeV, ISR on, FSR on, MPI on

Pythia 8.2 : $\sigma \sim 27 \text{ mb}$

Herwig 7.1: $\sigma \sim 16 \text{ mb}$

□ PU (=MinBias) events generated by Pythia 8.2 and mixed with signal by Delphes

Procedure

- □ Signal cross-section very low → high luminosities needed
- \Box Three points studied: $\mu = 0$, 10, 50 (average number of PU events per bunch crossing)
- □ Huge suppression factors needed for inclusive backgrounds ($\sim 10^{14}$) \rightarrow sufficient statistics cannot be generated in reasonable time \rightarrow cuts factorized into cut classes

Exclusive processes (QED, QCD)

ALL - NO-CHARGED

*

NO-CHARGED

Inclusive processes (ND dijets, pt>7 GeV)

DI-LEPTON

NO-CHARGED

ALL-NO-CHARGED: generator level + lepton reconstruction efficiencies

FPD: generator level

Di-lepton: generator level + lepton reconstruction efficiencies

No-charged: $P_{no-charged} = P_{gap}(gen. level) * P_{z-veto}(fast sim. Delphes)$

Signal event yields for L=300 fb^{-1} and μ =0

scenario	lepton p_T interval [GeV]			
$M_{\tilde{l}}/M_{\widetilde{\chi}_1^0}$	5—15	5—20	5—30	5—40
120/100	0.4	0.9	2.2	2.8
120/110	1.2	2.4	3.7	3.9
200/180	0.2	0.8	1.9	2.2
200/190	1.4	1.9	2.3	2.3
250/230	0.1	0.4	1.1	1.2
250/240	0.8	1.1	1.2	1.2
300/280	0.1	0.2	0.6	0.7
300/290	0.4	0.6	0.6	0.6

Improvements?

- Improve lepton reconstruction efficiencies (they start at 70% at p_T =5 GeV)
- Extend lepton acceptance up to $|\eta| = 4 \rightarrow 10\%$ increase of statistics
- Taking all dilepton masses doubles the signal yield. BUT:
- a) backgrounds increase
- b) $< m_{ll} >$ increases \rightarrow loosing possibility to reconstruct precisely m_{DM} via FPD

Fake dileptons

- \blacksquare Take inclusive ND dijets with $p_T > 7$ GeV and ISR, FSR, MPI on
- □ Select events with $\mu^+\mu^-$ or e^+e^- pairs with $p_{T,l} > 5$ GeV & $|\eta| < 2.5$, dR>0.3
- □ Isolation: remove events where the selected lepton is accompanied by at least one charged particle from the same heavy-particle decay and having $p_T > 0.4$ GeV & $|\eta| < 2.5$ (effectively rejecting decays with extra charged particle, e.g. $D^0 \to K^- e^+ \nu$ or $D^+ \to \rho^0 \mu^+ \nu$)
- Examples of surviving events: leptons from W-decays, π -decays, parton showers...
- ☐ Calculate probability to see such events in the control sample
- ☐ Apply lepton reconstruction efficiencies (from ATLAS inclusive slepton searches)
- PYTHIA 8.2: $P_{lep} = 0.8 \times 10^{-7}$ (W-bosons not included in inclusive jets)
- HERWIG 7.1: $P_{lep} = 2.5 \times 10^{-7}$ (45% of surviving events contain a W-boson)

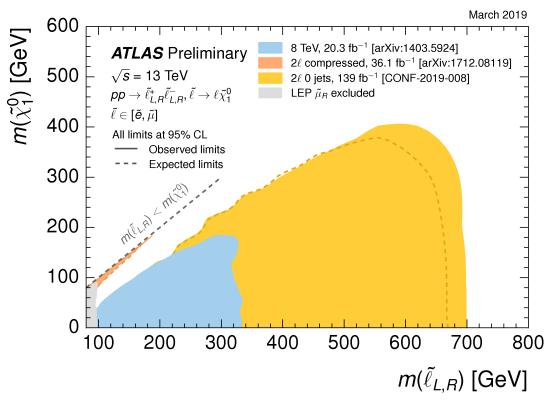
Correct PYTHIA number by 1.45: $P_{lep} = 1.2 \text{x} 10^{-7}$

Fake No-charged

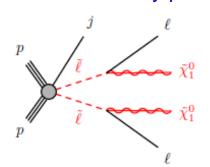
- \Box Signal: get the 'z-vertex veto' efficiency: P_{z-veto}
- z-vertex veto: no other vertices and tracks in the region 1mm from the primary vertex
- Using Delphes (overlay PU events and fast simulation of ATLAS tracker), we get

$$P_{z-veto}(\mu=10) = \text{0.84} \; ; \, P_{z-veto}(\mu=50) = 0.48. \label{eq:p_z_veto}$$

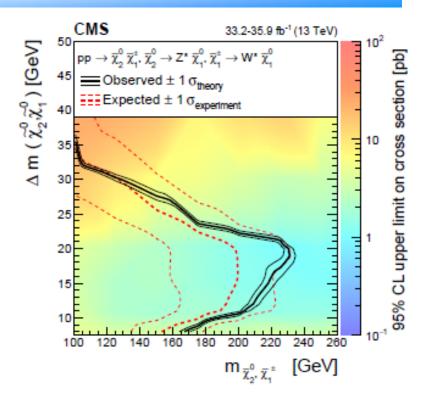
Agrees with exclusive dileptons w/o FPDs [ATLAS Phys.Lett.B777(2018)303]

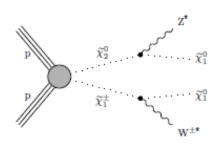

$lue{}$ Inclusive ND jets and exclusive $c\overline{c}$ and gg

- o zero PU:
- 1) Select events with 2-4 charged particles with $p_T > 5$ GeV & $|\eta| < 2.5(4.0)$ and at least two of them separated by dR>0.3.
- 2) Fraction of those not having additional particles with $p_T > 0.4$ GeV & $|\eta| < 2.5(4.0)$: $P_{gap}(\mu = 0)$
- o non-zero PU: assume that di-lepton cuts select events resembling the signal, i.e. exactly two leptons. Then $P_{no-charged}(\mu=10,50)=P_{gap}(\mu=0)*P_{z-veto}(\mu=10,50)$


No-charged	$\langle \mu \rangle_{PU}$		
probability	0	10	50
CEP $c\bar{c}$	$3.5 \cdot 10^{-3}$	$2.9 \cdot 10^{-3}$	$1.7 \cdot 10^{-3}$
CEP gg	$3.3 \cdot 10^{-5}$	$2.8 \cdot 10^{-5}$	$1.6 \cdot 10^{-5}$
Incl. jets $(\eta < 2.5)$	$5.2/2.0 \cdot 10^{-7}$	$4.4/1.7 \cdot 10^{-7}$	$2.5/1.0 \cdot 10^{-7}$
Incl. jets $(\eta < 4.0)$	$1.7/0.7 \cdot 10^{-7}$	$1.4/0.6 \cdot 10^{-7}$	$0.8/0.3 \cdot 10^{-7}$

PYTHIA8.2/HERWIG7.1




ATLAS SUSY Summary plot

Marek Taševský

Phys. Lett. B782 (2018) 440

Single & Double-Dissociation background

Pure exclusive: $m_{ll} > 10$ GeV: $\sigma = 8.4$ pb (Superchic [SC]). Low $m_{ll} \rightarrow \xi$ outside FPD acc.

BUT: protons from dissoc. system may end up in FPD. What probability? $0.02 < \xi < 0.15 \& p_{T,proton} < 0.35 \text{ GeV}$: 0.40% (PYTHIA 8.2 SD), 0.46% (triple Regge)

SD or DD not (yet) in Superchic.

Procedure:

- estimate using SC excl. processes $\gamma\gamma \rightarrow e^+e^-/\mu^+\mu^-/\tau^+\tau^-$
- consider all combinations of photon emissions: elastic, incoherent and DGLAP from quark
- evaluate effective flux which survives:
- a) veto on central particle production (account for no-charged cuts)
- b) acoplanarity cut limit z,Q^2 integral which generates photon flux
- Photon q_T^2 distr. generated logarithmically between q_0 =0.5 GeV and $m_{ll}/2$ (account for $|p_{T,l1}$ - $p_{T,l2}|$ >1.5 GeV cut)

See [EPJ C76 (2016) 255]

Nev/300fb-1	$e^{+}e^{-} + \mu^{+}\mu^{-}$	0/0	1.4/1.1
$ \eta < 2.5/ \eta < 4.0$	$\tau^+\tau^-$	0.05/0.02	0/0

DD

SD