EPS-HEP2019

Contribution ID: 456

Type: Poster

Studies of the ISR process e+e- -> pi+pi-pi0gamma at the phi mass with the KLOE detector

Monday, 15 July 2019 18:30 (1h 30m)

Experimental measured value of the muon magnetic moment $a_{\mu} = \frac{g_{\mu}-2}{2}$ has a long-standing and well known discrepancy comparing with Standard Model prediction that has been narrowed down within a range $3.2 - 3.6 \sigma$ after years of efforts made by experimentalists and theoreticians. Previous results of dipion cross section $\sigma_{\pi\pi} = \sigma(e^+e^- \rightarrow \pi^+\pi^-)$ from KLOE have provided comprehensive and substantial studies on the largest experimental input from hadronic contribution. In order to deepen the understand of theoretical uncertainty for a_{μ} , it is natural to extent the studies to three pion cross section, which is the second largest hardronic contribution to a_{μ} .

The initial state radiation (ISR) process $e^+e^- \rightarrow 3\pi$ has been studied at a center-of-mass energy $\sqrt{s} \approx 1.019$ GeV close to the ϕ resonance using a 1.7 fb⁻¹ data sample collected with KLOE detector at the DAΦNE year 2004/2005. In this analysis, we have studied the visible section $\sigma_{3\pi}^{\rm vis}$ of process $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ for the effective center-of-mass energy $\sqrt{s'}$ corresponds to omega mass range $M_{3\pi} \in [720, 900] \,\mathrm{MeV}/c^2$. With the same dataset, a further study of C-violating decay $e^+e^- \rightarrow \phi \rightarrow \omega\gamma$ is being performed based on a careful investigation of the ISR process, which is the major background with identical 3π final state.

Primary author: GIOVANNELLA, Simona (INFN) Presenter: Dr BO, Cao

Session Classification: Wine & Cheese Poster Session

Track Classification: QCD and Hadronic Physics