Measurement of hadronic cross sections at CMD-3

Vyacheslav Ivanov

on behalf of the CMD-3 collaboration

Novosibirsk State University & Budker Institute of Nuclear Physics EPS-HEP 2019

12.07.2019

VEPP-2000 collider

- VEPP-2000 (Novosibirsk, Russia) scans the \sqrt{s} in the range from 0.32 to 2.01 GeV
- Beam energy is monitored by the Compton backscattering laser light system with ~50 keV precision
- Uses "round beams" technique (focusing solenoids)
- Maximum luminosity achieved $4 \times 10^{31} \ \mathrm{cm^{-2} s^{-1}}$
- CMD-3 and SND detectors placed at two beam interaction points

CMD-3 detector

CMD-3 detector & physics program

- Precise measurement of $R = \frac{\sigma(e^+e^- \to hadrons)}{\sigma(e^+e^- \to \mu^+\mu^-)}$ to achieve <1% systematic for major channels
- Study of the exclusive hadronic channels of e^+e^- annihilation, test of the isotopic relations
- Study of the "excited" vector mesons: $\rho', \rho'', \omega', \phi'$...
- Study of G_E/G_M for nucleons and behavior of hadronic cross sections near $N\overline{N}$ threshold
- CVC tests: comparison of isovector part of $\sigma(e^+e^- \to hadrons)$ with τ –decay spectra
- Two-photon physics (e.g. η production)

In this talk I'm focusing on the recent results of the study of exclusive hadronic final states

g-2 of muon puzzle

Magnetic moment of Dirac particle:

$$\overrightarrow{\mu_{\mu}} = g_{\mu} \frac{q_{\mu}}{2m_{\mu}} \vec{s}, \qquad g_{\mu} = 2(1 + a_{\mu})$$

$$\uparrow \qquad \uparrow$$
Dirac Anomaly

• There is ~3.5 σ discrepancy between experimentally measured and SM prediction for a_{μ}

$$a_{\mu}^{SM} = a_{\mu}^{QED} + a_{\mu}^{Had} + a_{\mu}^{Weak}$$

$$a_{\mu}^{Had} = a_{\mu}^{Had(LO)} + a_{\mu}^{Had(NLO)} + a_{\mu}^{Had(LBL)}$$

 $\times 10^{-11}$

JN 2009 -301 ± 65

HLMNT 2011 -263 ± 49

LO-Hadronic contribution to a_{μ}

• $a^{\rm had,LO}_{\mu}$ is calculated by integrating the experimental inclusive cross section $\sigma(e^+e^- \to hadrons)$:

$$a^{had;LO}_{\mu} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{4m_{\pi}^2}^{\infty} \frac{ds}{s^2} K(s) R(s)$$

• Due to $1/s^2$ weighting the energy range of VEPP-2000 makes a dominant contribution of ~93% to the $a^{had;L0}_{\mu}$ and ~70% to its uncertainty

CMD-3: overview of data taking

- Before upgrade (2011-2013) the luminosity at high energies was limited by a deficit of positrons and limited energy of the booster
- 2017: new injection complex and booster gave a big improvement in luminosity at high energy, still way to go
- 2018: "Beamshaking" technique was introduced, which suppresses beam instabilities (x4 Lum)
- $L\sim250~{\rm pb^{-1}}$ per detector collected so far:

 \sim 65 pb⁻¹ < 1 GeV, \sim 185 pb⁻¹ > 1 GeV

Exclusive channels of $e^+e^- \rightarrow hadrons$

Event signature	Final state (published/submitted, in progress)	
2 charged	$\pi^+\pi^ K^+K^ K_SK_L$ $p\overline{p}$ $\pi^+\pi^-\gamma$	
2 charged + γ's	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
4 charged	$2\pi^{+}2\pi^{-}$ $K^{+}K^{-}\pi^{+}\pi^{-}$ $K_{S}K^{\pm}\pi^{\mp}$	
4 charged + γ's	$2\pi^{+}2\pi^{-}\pi^{0}$ $2\pi^{+}2\pi^{-}2\pi^{0}$ $\pi^{+}\pi^{-}\eta$ $\pi^{+}\pi^{-}\omega$ $2\pi^{+}2\pi^{-}\eta$ $K^{+}K^{-}\omega$ $K_{S}K^{\pm}\pi^{\mp}\pi^{0}$ $D^{*0}(2007)$	
6 charged	$3\pi^{+}3\pi^{-}$ $K_{S}K_{S}\pi^{+}\pi^{-}$	
6 charged + γ's	$3\pi^{+}3\pi^{-}\pi^{0}$	
Fully neutral	$\begin{array}{ccc} \pi^0 \gamma & 2\pi^0 \gamma & 3\pi^0 \gamma \\ \eta \gamma & \pi^0 \eta \gamma & 2\pi^0 \eta \gamma \end{array}$	
Other	$n\overline{n}$ $\pi^0 e^+ e^ \eta e^+ e^-$	

Published/submitted results:

 $3\pi^{+}3\pi^{-}$: PLB 723 (2013) 82-89

η': PLB 740 (2015) 273-277

pp̄: PLB 759 (2016) 634-640

 $K^+K^-\pi^+\pi^-$: PLB 756 (2016) 153-160

 K^+K^- (at $\phi(1020)$): PLB 760 (2016) 314-319

 $2\pi^{+}2\pi^{-}$ (near $\phi(1020)$: PLB 768 (2017) 345-350

 $\omega \eta$, $\eta \pi^+ \pi^- \pi^0$: PLB 773 (2017) 150-158

 $K_S K_L$ (at $\phi(1020)$): PLB 779 (2018) 64-71

 $3\pi^{+}3\pi^{-}\pi^{0}$: PLB 792 (2019), 419-423

 $K^+K^-\eta$: arXiv:1906.08006, submitted to

PLB 8

$e^+e^- \rightarrow \pi^+\pi^-$: pion formfactor measurement

- It is a main contributor to the $a^{\rm had,LO}_{\mu}$ (~73%)
- The CMD-3's goal it to measure the $|F_\pi|^2$ with 0.4-0.5% systematics uncertainty
- CMD-3's 2013 & 2018 statistics for $\pi^+\pi^-$ a few times larger than in other experiments
- To control systematics, two independent approaches for determination of the number of $\pi^+\pi^-$ events are used:

momentum-based and energy deposition-based

- Momentum-based approach works better at low c.m. energies (<0.8 GeV), energy-based at large energies (>0.6 GeV). Using both methods in the middle allows to control systematics
- In both cases 2D-likelihood function is constructed, its minimization gives $N_{\pi\pi}/N_{ee}$

$e^+e^- \rightarrow \pi^+\pi^-$: pion formfactor measurement

 The projection of the fitting functions after minimization: 10⁴

The list of sources of systematics:

- Radiative corrections
- $e/\mu/\pi$ separation
- Uncertainty of fiducial volume
- Beam energy
- Electron bremsstrahlung loss
- Pion specific corrections
- Currently the systematics is estimated to be 0.6-0.9% (momentum-based)

Additional test – $\sigma(e^+e^- \rightarrow \mu^+\mu^-)$ measurement (compatible with QED at ~0.25%):

 The results of 2013 and 2018 are consistent within ~0.1%:

Study of $e^+e^- o \pi^+\pi^-\pi^0\pi^0$ process

- Process has very complicated production dynamics
- Since the detection efficiency strongly depends on the dynamics, the simultaneous unbinned fit of $\pi^+\pi^-\pi^0\pi^0$ and isotopically-related $\pi^+\pi^-\pi^+\pi^-$ final states is performed
- $\pi^+\pi^-\pi^0\pi^0$ events were selected in a 5C-kinematic fit (energy-momentum conservation + π^0 mass for one pair of photons)
- 72000 $\pi^+\pi^-\pi^+\pi^-$ events were selected in a 4C-kinematic fit (energy-momentum conservation)

Study of $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ process

 The effective lagrangians are used to calculate the amplitudes

$$\begin{split} L(\omega\rho\pi) &= g_{\omega\rho\pi} \cdot \epsilon_{\mu\nu\rho\sigma} \cdot \delta^{ab} \cdot \omega_{\mu} \cdot d_{\nu}\pi^{\star a} \cdot (d_{\rho}\rho_{\sigma}^{\star b} - d_{\sigma}\rho_{\rho}^{\star b}), \\ L(a_{1}\rho\pi) &= g_{a_{1}\rho\pi} \cdot \epsilon^{abc} \cdot a_{1\mu}^{a} \cdot d_{\nu}\pi^{\star b} \cdot (d_{\mu}\rho_{\nu}^{\star c} - d_{\nu}\rho_{\mu}^{\star c}), \\ L(a_{1}\sigma\pi) &= g_{a_{1}\sigma\pi} \cdot \delta^{ab} \cdot (d_{\mu}a_{1\nu}^{a} - d_{\nu}a_{1\mu}^{a}) \cdot d_{\mu}\phi^{\star}(\sigma) \cdot d_{\nu}\phi^{\star b}(\pi), \\ L(\rho'\rho f_{0}) &= g_{\rho'\rho f_{0}} \cdot \delta^{ab} \cdot (d_{\mu}\rho_{\nu}^{'a} - d_{\nu}\rho_{\mu}^{'a})(d_{\mu}\rho_{\nu}^{\star b} - d_{\nu}\rho_{\mu}^{\star b}) \cdot \phi_{f_{0}}^{\star}, \\ L(\rho'\rho^{+}\rho^{-}) &= g_{\rho'\rho^{+}\rho^{-}} \cdot \epsilon^{abc}(d_{\mu}\rho_{\nu}^{'a} - d_{\nu}\rho_{\mu}^{'a}) \cdot (d_{\alpha}\rho_{\nu}^{\star b} - d_{\nu}\rho_{\alpha}^{\star b}) \cdot (d_{\mu}\rho_{\alpha}^{\star c} - d_{\alpha}\rho_{\mu}^{\star c}) \\ L(\rho'h_{1}\pi^{0}) &= g_{\rho'h_{1}\pi^{0}} \cdot \delta^{ab}(d_{\mu}\rho_{\nu}^{'a} - d_{\nu}\rho_{\mu}^{'a}) \cdot (d_{\mu}h_{1\nu}^{\star b} - d_{\nu}h_{1\mu}^{\star b})\phi_{\pi}^{\star}, \end{split}$$

 From the unbinned fit the relative amplitudes of the different mechanisms were determined:

• The effective lagrangians are used to calculate • After the fit simulation shows reasonable agreement with data:

 $\omega(782)\pi^0$ and $a_1\pi$ dominate in the process, but other mechanisms are also statistically significant

The total cross section was measured:

For more details see poster by E. Kozyrev

Study of $e^+e^- \rightarrow K^+K^-\eta$ process

• The selection of kaons is performed using the log-likelihood function, based on the measured dE/dx in the DC

$$L_{2K} = \sum_{i=1}^{2} \ln \left(\frac{f_K(p_i, (dE/dx)_i)}{f_K(p_i, (dE/dx)_i) + f_{\pi}(p_i, (dE/dx)_i)} \right)$$

• Event selection: 4C-kinematic fit with all pairs of photons in the event

• No evidence of NON- $\phi\eta$ events with $m_{inv}(K^+,K^-) > 1075 \text{ MeV/c}^2$ (only $\phi\eta$ is seen):

Study of $e^+e^- \rightarrow K^+K^-\eta$ process

Signal/background separation is done by fitting the energy disbalance distribution:

$$\Delta E = \sqrt{\vec{p}_{K^+}^2 + m_{K^+}^2} + \sqrt{\vec{p}_{K^-}^2 + m_{K^-}^2} + \sqrt{(\vec{p}_{K^+} + \vec{p}_{K^-})^2 + m_{\eta}^2} - E_{\text{c.m.}}$$

From the cross section fitting the $\phi'(1680)$ parameters were determined with the best precision at the moment

Table 4: Results of the $e^+e^- \rightarrow \phi \eta$ cross section approximation.				
Parametrization using	$\Gamma_{ee}^{\phi'} {\cal B}_{\phi\eta}^{\phi'}$	$\mathcal{B}_{e^+e^-}^{\phi'}\mathcal{B}_{\phi\eta}^{\phi'}$		
Parameter	Value			
$\chi^2/\mathrm{n.d.f}$	$93.8/79 \approx 1.19$			
$\Gamma^{\phi'}_{ee} \mathcal{B}^{\phi'}_{\phi\eta}, \mathrm{eV}$	$94\pm13_{\rm stat}\pm15_{\rm syst}$	_		
${\cal B}_{e^+e^-}^{\phi'}{\cal B}_{\phi\eta}^{\phi'}$	_	$0.53 \pm 0.06_{\rm stat} \pm 0.09_{\rm syst}$		
$m_{\phi'}, { m MeV}$	$1667 \pm$	$\pm 5_{ m stat} \pm 11_{ m syst}$		
$\Gamma_{\phi'}, { m MeV}$	176 ± 2	$23_{\rm stat} \pm 38_{\rm syst}$		
$a_{ m n.r.}, { m MeV}$	1.1	$\pm 0.6_{\mathrm{stat}}$		
$\Psi_{ m n.r.}$	0.14	$4\pm0.67_{\mathrm{stat}}$		
		14		

Searching for $e^+e^- \rightarrow D^{*0}$ (2007)

We are trying to probe also charm-physics

SM: $\mathcal{B}(D^* \to e^+e^-) \ge 5 \times 10^{-19}$

After filtration (1./500 bkg suppression):

Likelihood of K3π (dE/dx,p)

- Motivation: A. Khodjamirian et al, $\underline{\mathsf{JHEP11}(2015)142}$: New Physics with $\mathsf{Z'}:\mathcal{B}(D^*\to e^+e^-)<2.5\times10^{-11}$
- VEPP-2000 collected 3.4 pb^{-1} at 2007 MeV:

Ks filtration All 4 tracks events Entries 58568 \$ 400 266 Entries 55.94 Mean x (experiment + sim) Mean y 200 Std Dev y 39.89 $D_0^* \rightarrow D_0^{-\pi}$ -200**-200** $-400[-D^*_0 \rightarrow D_0]$ -400ightarrow K 3π -600 -600 100 150 200 250 300 350 200 100 150 250 300 PAII P_{41r},MeV/c

First time UL measurement:

$$D^{*0} \to D^0 \gamma$$
: $\mathcal{B}(D^* \to e^+ e^-) < 5.2 \times 10^{-6} \text{ (90\% CL)}$
 $D^{*0} \to D^0 \pi^0$: $\mathcal{B}(D^* \to e^+ e^-) < 1.7 \times 10^{-6} \text{ (90\% CL)}$

Multihadron production @ NN threshold

- In 2017 we did the detailed scan of $N\overline{N}$ threshold region with the step 0.8 MeV (~beam energy spread)
- Several dip structures with ~ 1 MeV width are seen in multihadron production! (see details in PLB 794 (2019) 64-68)
- effect can be described via optical nucleon-antinucleon potentials ("Milstein-Salnikov" parametrization, see Nuc. Phys. A 977 (2018) 60-68)

Multihadron production @ $N\overline{N}$ threshold

• Hovewer, some questions still remain: why no "dip" structure in $e^+e^- \rightarrow 2\pi^+2\pi^-$, $\pi^+\pi^-4\pi^0$?

Figure 4: The $e^+e^- \to 2(\pi^+\pi^-)$ cross section measured with the CMD-3 detector. Lines show the $p\bar{p}$ and $n\bar{n}$ thresholds.

Study of $e^+e^- \rightarrow \pi^+\pi^-\eta$ process

- Event selection ($\eta \to \gamma \gamma$): 4C-kinematic fit (energy-momentum conservation)
- $e^+e^- \rightarrow \rho(770)\eta$ mechanism dominates
- Signal/background separation using $m(\gamma\gamma)$ distribution
- Cross section is fitted with $\rho(770), \rho(1450)$ and $\rho(1700)$ intermediate resonances

√s (GeV)

Other published result

• $e^+e^- \rightarrow 3(\pi^+\pi^-)\pi^0$: PLB 792 (2019), 419-423

• $e^+e^- \to K^+K^-$ at ϕ : PLB 779 (2018) 64

• $e^+e^- \to \pi^+\pi^-\pi^0\eta$: PLB 773 (2017) 150-158

• $e^+e^- \to K_SK_L$ at ϕ : PLB 760 (2016) 314-319

Other preliminary result

• Study of $e^+e^- \rightarrow K_SK_L\pi^0$:

• Study of $e^+e^- \rightarrow K_SK_L$ above ϕ

• Study of $e^+e^- \rightarrow \pi^0 \gamma$, $\eta \gamma$

• Study of $e^+e^- \rightarrow K^+K^-\pi^0$:

• Study of $e^+e^- \to K^+K^-\omega(782)$:

Conclusions

- CMD-3 has taken ~250 pb⁻¹ of data in the whole energy range $0.32 \le \sqrt{s} \le 2.0$ GeV and is going to take ~1fb⁻¹ in the next ~5 years
- Some upgrade of detector subsystems are planned (endcap and barrel coordinate counters, new drift chamber)
- Many analyses have been published. Many others are in progress

Thank you!

BACKUP

$e^+e^- \rightarrow 3(\pi^+\pi^-)\pi^0$ from CMD-3

First time measurement of total cross-section $4\pi\eta$, $4\pi\omega$ dominated

~1% of R(s) at 2 GeV

Phys. Lett. B792, 419 (2019)

It is the first measurement of the 7pi production

Energy measurement

Starting from 2012, beam energy and energy spread are monitored continuously using Compton backscattering system with about 30 keV uncertainty

