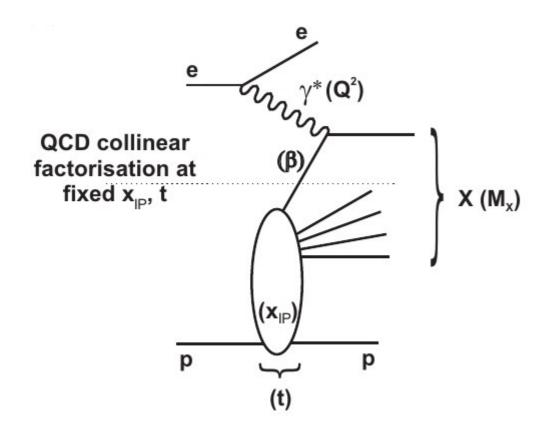
Diffractive PDF determination from HERA incl. and jet data at NNLO

Radek Žlebčík on behalf of the H1 Collaboration


Ghent EPS 2019, July 12

Gravensteen castle

Diffractive Production in ep

In diffractive events the beam proton stays intact or dissociates into low mass hadronic system Y

At HERA about 10% of low-x events are diffractive

DIS variables:

$$Q^2 = -(k - k')^2 \qquad y = \frac{p \cdot q}{p \cdot k}$$

Diffractive variables:

$$x_{IP} = 1 - \frac{E'_p}{E_p}$$
 $t = (p - p')^2$

Mass:
$$M_X^2 = Q^2 \left(\frac{1}{\beta} - 1\right)$$

At LO: The momentum fraction entering the hard subprocess with respect to the diffractive exchange

$$\beta = \frac{x_{Bj}}{x_{I\!\!P}} = \frac{Q^2}{syx_{I\!\!P}}$$

Collinear QCD factorization theorem in hard diffraction

- For diffractive events with a hard scale (e.g Q² or jets p_T)
- Factorization of the diffractive cross section into process independent DPDFs and partonic cross sections

$$d\sigma(ep \to epX) = \sum_{i} f_i^D(x, Q^2, x_{IP}, t) \otimes d\sigma^{ie}(x, Q^2)$$

For diffractive processes (including dijets) with high enough Q² factorization proven by Collins within perturbative QCD, for low Q² factorization breaking suggested

Factorization of Hard Processes in QCD

John C. Collins (IIT, Chicago & SUNY, Stony Brook), Davison E. Soper (Oregon U.), George F. Sterman (SUNY, Stony Brook). May 30, 1989. 91 pp. Published in Adv.Ser.Direct.High Energy Phys. 5 (1989) 1-91 ITP-SB-89-31

DOI: <u>10.1142/9789814503266_0001</u> e-Print: <u>hep-ph/0409313</u> | PDF

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote
ADS Abstract Service

Detailed record - Cited by 812 records 500+

Proof of factorization for diffractive hard scattering

John C. Collins (Penn State U.). Sep 1997. 12 pp. Published in Phys.Rev. D57 (1998) 3051-3056, Erratum: Phys.Rev. D61 (2000) 019902

PSU-TH-189

DOI: 10.1103/PhysRevD.57.3051, 10.1103/PhysRevD.61.019902 e-Print: hep-ph/9709499 | PDF

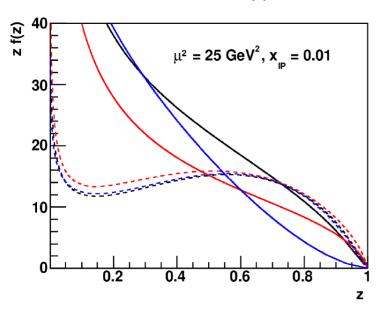
References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote ADS Abstract Service; OSTI.qov Server

Detailed record - Cited by 404 records 250+

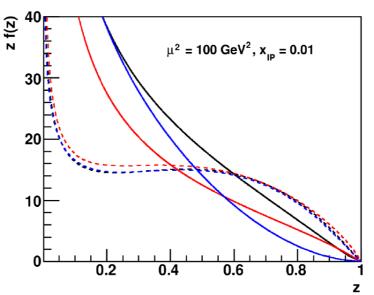
NLO DPDFs

- DPDF sets differ mainly in gluon component which is weekly constrain from inclusive diffractive data
- For gluon dominated diffractive dijet production we have sizable DPDF uncertainty
- DPDFs obey standard DGLAP evolution equation

Fits of **inclusive** data

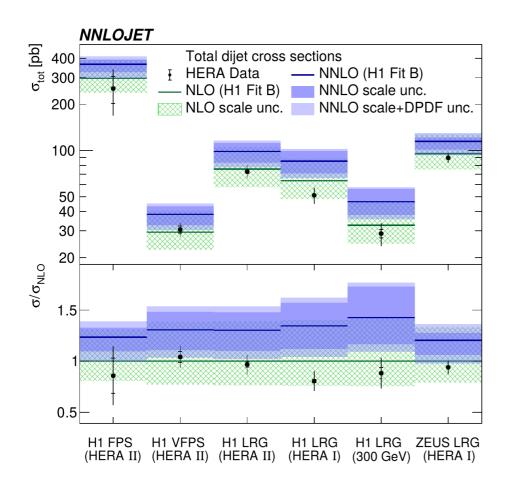

H1 2006 Fit A
H1 2006 Fit B
MRW DPDF
GKG18

Combined inclusive + dijets data fits


H1 2007 Fit Jets ZEUS 2009 Fit SJ

Quark Singlet Densities ----- H1 Fit B - z Σ(z) ----- H1 Fit Jets - z Σ(z)

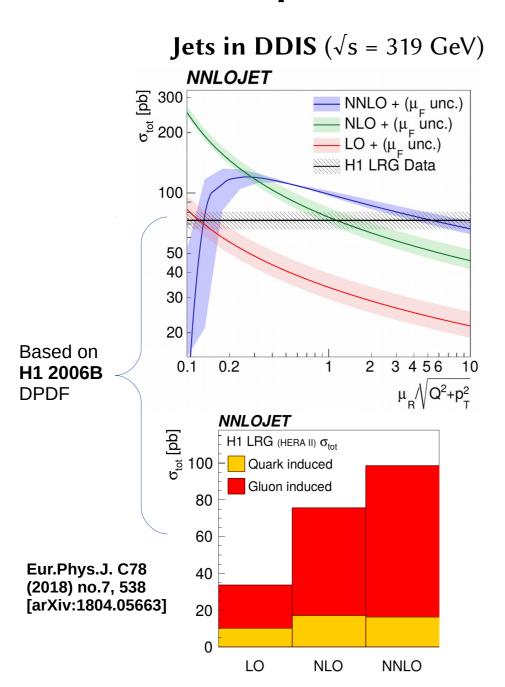
----- ZEUS SJ - z $\Sigma(z) \times 1.2$


70% of diffractive exchange momentum carried by gluons

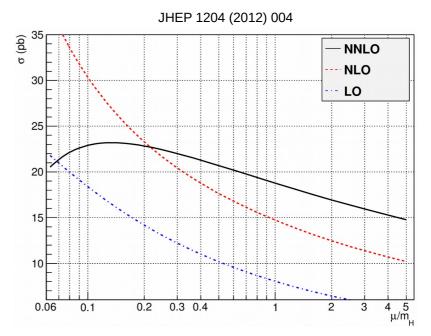
Why new DPDFs?

Motivation 1: Progress in theory

- Compared to 2006 or 2007 the NNLO predictions are currently available for both, the inclusive production and jet production
- Large NNLO/NLO k-factors observed for dijet production



The NNLO prediction based on H1 Fit2006B NLO DPDF overestimates the data by ~30% With much lower scale unc. for NNLO


Eur.Phys.J. C78 (2018) no.7, 538 [arXiv:1804.05663]

Are inclusive and jet data compatible at NNLO?

Scale dependence of dijet cross section

Higgs production in pp ($\sqrt{s} = 8 \text{ TeV}$)

- The gluon-DPDF induced cross section rises gradually with order
- The quark-Induced cross section stagnates at NLO
- At NNLO 84% of the cross section is from gluon DPDF

Motivation 2: Progress in data

 Compared to last diffractive fits from 2006 or 2007 the HERA II data of much higher luminosity available

Inclusive DDIS data:

Data Set	Q^2 range	Proton Energy	Luminosity	
	(GeV ²)	E_p (GeV)	(pb^{-1})	
New data samples				
1999 MB	$3 < Q^2 < 25$	920	3.5	
1999-2000	$10 < Q^2 < 105$	920	34.3	
2004-2007	$10 < Q^2 < 105$	920	336.6	
Previously published data samples				
1997 MB	$3 < Q^2 < 13.5$	820	2.0	
1997	$13.5 < Q^2 < 105$	820	10.6	
1999-2000	$133 < Q^2 < 1600$	920	61.6	

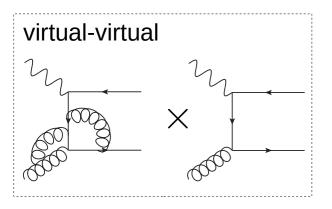
~40 times higher luminosity

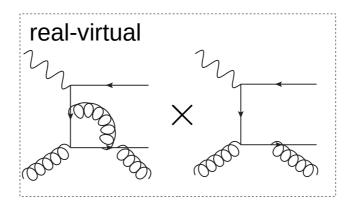
Eur.Phys.J. C72 (2012) 2074 [arXiv:1203.4495] + data at lower energies 225, 252 GeV

The jet data:

New data sample				
2005-2007	920 + 27.6	290 pb ⁻¹		
Previously published				
1999-2000	920 + 27.5	51.5 pb ⁻¹		

~6 times higher luminosity


JHEP 1503 (2015) 092 [arXiv:1412.0928]: With proper treatment of correlations between bins 8


Overview of the new fit


Theory

- NNLO accuracy for both inclusive and jet production
- Using FONLL-C GM-VFNS (by APFEL) for inclusive production, \rightarrow default QCD scale for inc. production: $\mu_R^2 = \mu_F^2 = Q^2$
- Using NNLOJET (massles quarks) + fastNLO for dijets, \rightarrow default QCD scale for dijets: $\mu_R^2 = \mu_F^2 = Q^2 + \langle p_T^{*\rm jets} \rangle^2$
- Scale unc. by simultaneous (for all processes) $\mu_F = \mu_R x2$, x0.5 variation

Examples of α_S^3 diagrams contributing to dijet production

Collinear QCD factorization in inclusive DDIS

 $\alpha_{em} \stackrel{\text{def}}{=} \frac{1}{137}$

Fixed

The reduced diffractive cross section:

$$\frac{\mathrm{d}^{3}\sigma^{ep\to eXY}}{\mathrm{d}Q^{2}\mathrm{d}\beta\mathrm{d}x_{I\!\!P}} = \frac{4\pi\alpha_{em}^{2}}{\beta Q^{4}} \left(1 - y + \frac{y^{2}}{2}\right) \left(F_{2} - \frac{y^{2}}{1 + (1 - y)^{2}}F_{L}\right)$$

$$\sigma_{r}^{D(3)}(\beta, Q^{2}, x_{I\!\!P})$$

Regge factorization ansatz

 $F_{2/L}^{D(3)}(\beta,Q^2,x_{I\!\!P}) = f_{I\!\!P/p}(x_{I\!\!P})F_{2/L}^{I\!\!P}(\beta,Q^2) + n_{I\!\!R}f_{I\!\!R/p}(x_{I\!\!P})F_{2/L}^{I\!\!R}(\beta,Q^2)$

$$F_{2/L}^{I\!\!P}(\beta,Q^2) = C_{2/L}^i(\beta/z,Q^2,\mu^2) \otimes f_{i/I\!\!P}(z,\mu^2)$$

Up to NNLO

Standard DIS coef. functions

Obeys DGLAP

DPDF Parametrization

Regge factorisation ansatz

$$f_i^D(z,\mu^2,x_{I\!\!P},t) = f_{I\!\!P/p}(x_{I\!\!P},t) f_{i/I\!\!P}(z,\mu^2) + n_{I\!\!R} f_{I\!\!R/p}(x_{I\!\!P},t) f_{i/I\!\!R}(z,\mu^2)$$

• Pomeron PDF $f_{i/I\!\!P}(z,\mu^2)$

times z=1 regulator:
$$\exp\left(-\frac{0.01}{1-z}\right)$$

	Gluon at μ ₀	Singlet at μ_0 ($u=d=s=u=d=s$)
H1 Fit2006A	$A_g (1-z)^{C_g}$	
H1 Fit2006B	A_g	$A_q z^{B_q} (1-z)^{C_q}$
H1 Fit2007Jets ZEUS SJ H1 Fit2019 NNLO	$A_g z^{B_g} (1-z)^{C_g}$	

- Reggeon PDF $f_{i/I\!\!R}(z,\mu^2)$
 - \rightarrow only few % at $x_{IP} = 0.03$
 - → Fixed to the pion PDF (GRV NLO as default)
 - \rightarrow The overall normalization $n_{\mathbb{R}}$ taken as free parameter

Parameters & Model Unc.

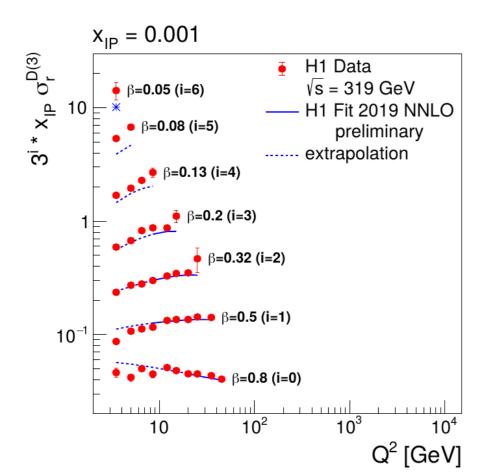
• Flux param. inspired by Regge theory (Streng and Berger):

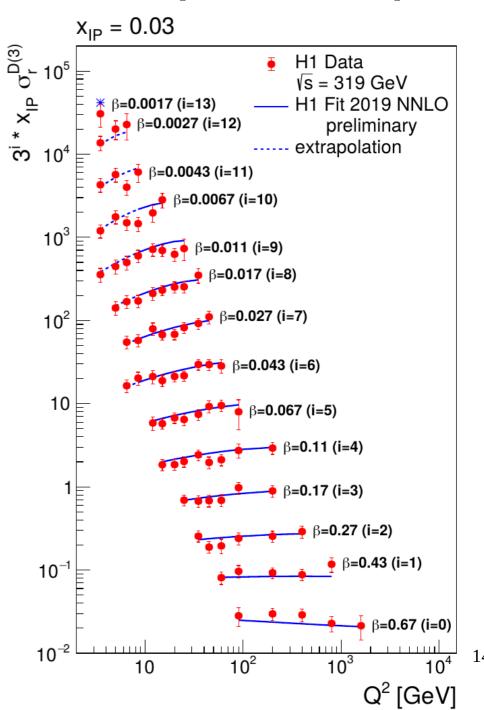
• t-integrated version: $f_{I\!\!P/p}(x_{I\!\!P}) \propto \left(\frac{1}{x_{I\!\!P}}\right)^{2\alpha_{I\!\!P}(0)-1-2\frac{\alpha'_{I\!\!P}}{B_{I\!\!P}^0}}$ ~1.2, Fitted ~0.01, Fixed

	Parameter	Value	Source
Pomeron slope	$lpha'_{I\!\!P}$	$0.04^{+0.08}_{-0.06}~\text{GeV}^{-2}$	H1 FPS HII [arXiv:1010.1476]
Pomeron B-slope	$B_{I\!\!P}^0$	$5.73^{+0.84}_{-0.93}~{ m GeV}^{-2}$	H1 FPS HII [arXiv:1010.1476]
Reggeon intercept	$\alpha_{I\!\!R}(0)$	0.5 ± 0.1	H1 LRG HI [hep-ex/9708016]
Reggeon slope	$lpha'_{I\!\!R}$	$0.3^{+0.6}_{-0.3}~{ m GeV}^{-2}$	H1 FPS HI [hep-ex/0606003]
Reggeon B-slope	$B_{I\!\!R}^{0}$	$1.6^{+0.4}_{-1.6}~{ m GeV}^{-2}$	H1 FPS HI [hep-ex/0606003]
charm mass	m_c	$1.4\pm0.2~\mathrm{GeV}$	PDG2004
bottom mass	m_b	$4.5\pm0.5~\mathrm{GeV}$	PDG2004
strong coupling	$\alpha_S(M_Z^2)$	0.118 ± 0.002	PDG2004
staring scale of ev.	μ_0	$1.15^{+0.24}_{-0.15} \text{ GeV}$	

- The QCD scale varied by a factor of 2 (dominant unc. together with μ_0 variation)
- 8 parameters fitted: 6 of pomeron PDF + $\alpha_{\mathbb{P}}(0)$ & $n_{\mathbb{R}}$

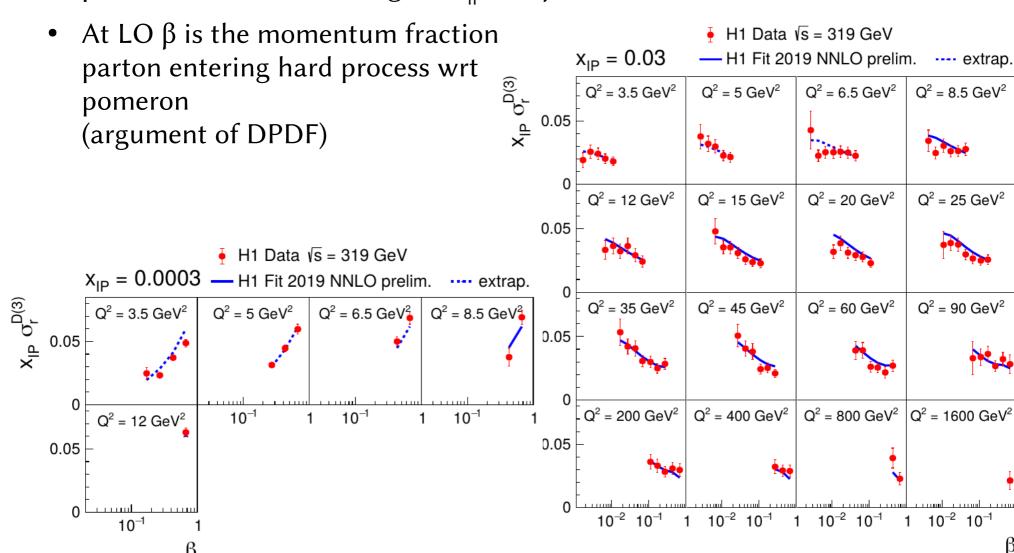
Fitted data sets


Data

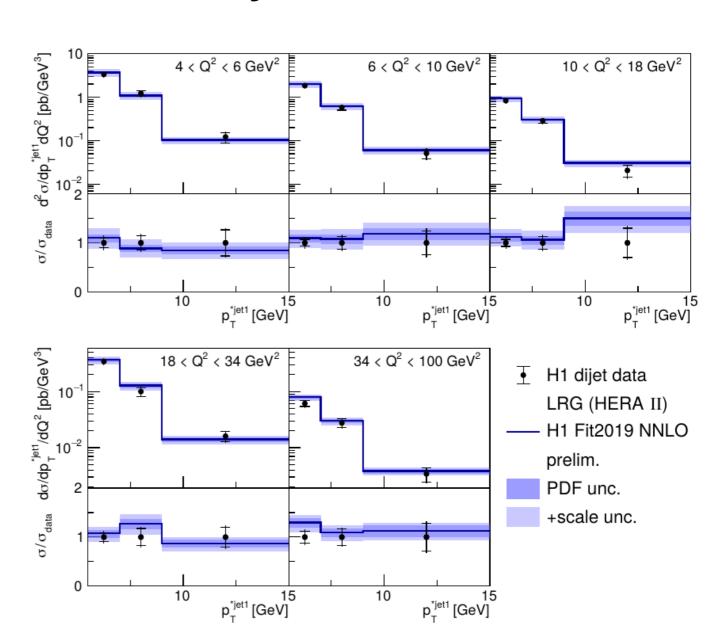

- Combined H1 HERA-I + HERA-II LRG inc. data [arXiv:1203.4495]
- H1 LowE HERA-II LRG inc. data $\sqrt{s}=225~{\rm GeV}, \sqrt{s}=252~{\rm GeV}$ [arXiv:1107.3420]
- H1 HERA-II dijets LRG data, p_T jet1 vs Q² dist. [arXiv:1412.0928]

Data Set	Phase-Space	$\sqrt{s}~[{\sf GeV}]$	$Lumi\ [pb^{-1}]$	$\chi^2/N_{ m pts}$
H1 LRG HERA-I+II	$8.5 < Q^2 < 1600 \mathrm{GeV}^2$	319 + 300	up to 336.6	192/191
inc. combined	$0.0003 < x_{I\!\!P} < 0.03$	319 + 300	ир to 330.0	192/191
H1 LRG HERA-II		252	5.2	19/12
inc. lowE252	$8.5 < Q^2 < 44 \mathrm{GeV}^2$	232	5.2	19/12
H1 LRG HERA-II	$0.0005 < x_{I\!\!P} < 0.003$	225	8.5	10/13
inc. lowE225		223	0.5	10/13
H1 LRG HERA-II	$4 < Q^2 < 100 \text{GeV}^2$			
dijets	$p_T^{ m jet1(2)} > 5.5(4){ m GeV}$	319	290	12/15
$p_T^{ m jet1}$ vs Q^2 distr.	$x_{I\!\!P} < 0.03$			·
+ always:				
$ t < 1 \text{ GeV}^2, M_Y < 1.6 \text{ GeV}$				ndf = 223

Fitted data – Inclusive Sample (Q2 dep.)


- At the nominal HERA energy $(\sqrt{s}=319 \text{GeV})$ fitted combined H1 HERA I+HERA-II data $x_{\text{IP}}=0.0003,\,0.001,\,0.003,\,0.01,\,0.03$
- Description in "extrapolated" region Q² < 8.5 sometimes worse

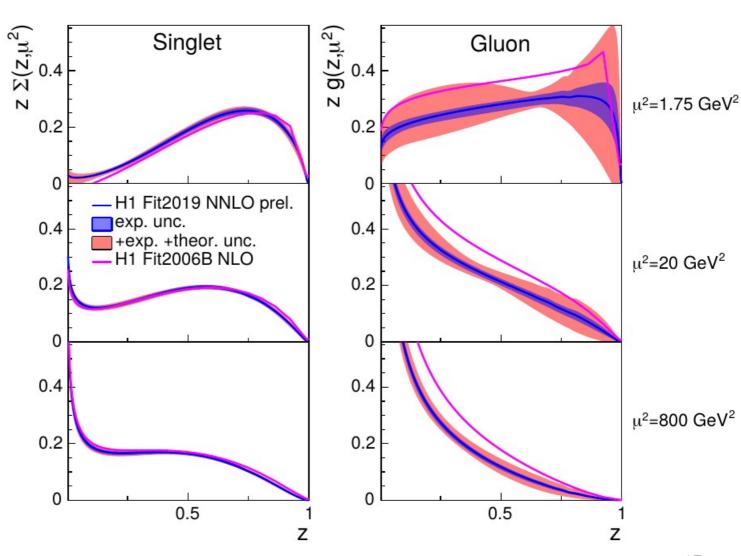
Fitted data – Inclusive Sample (β dep.)


• Good description by NNLO QCD predictions over wide range of x_{IP} and β

15

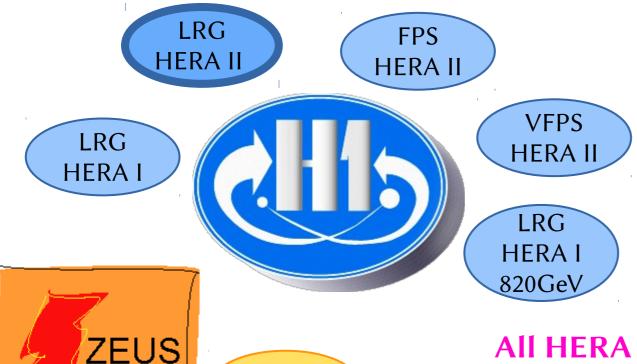
Fitted data – Jet Data

- Currently only the 2D p_T jet1 vs Q²
 H1 HERA-II cross sections fitted
- Shown PDF & scale uncertainty of the fit
- Good fit quality $\chi^2/ndf = 12/15$



The DPDF Comparison (H1 Fit2019 NNLO vs H1 Fit2006B NLO)

The old and new DPDFs in different QCD order & flavour scheme
 → comparison problematic!


Singlet =
$$u + d + s$$

(+anti-q)

- The quark single component comparable for both fits
- Gluon component of the newer fit
 ~25% lower

The DDIS HERA dijets measurements

- 5times e+p 27.6 GeV + 920 GeV
 1times e+p 27.5 GeV + 820 GeV
- 4times Large Rapidity Gap selection (LRG)
 2times Proton Spectrometer (FPS, VFPS)

LRG

HERAI

H1 LRG HERA II Phase Space

$$4 < Q^2 < 100 \text{ GeV}^2$$

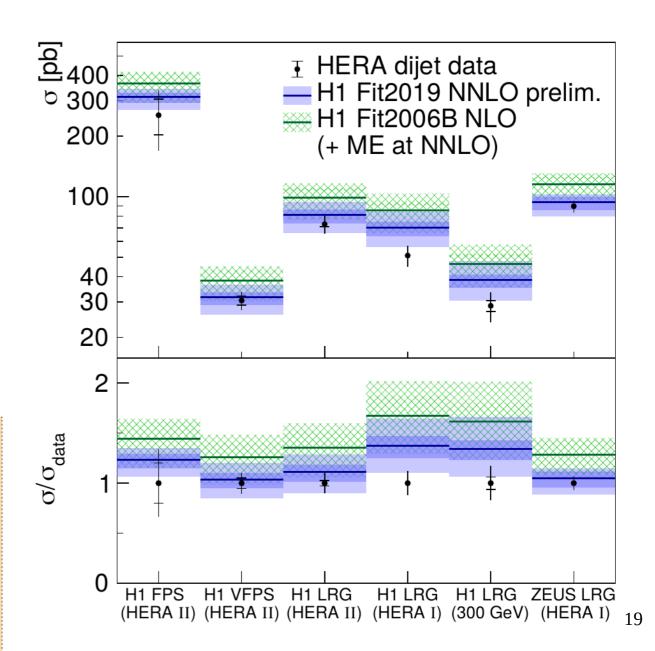
$$x_{I\!\!P} < 0.03$$

$$|t| < 1 \text{ GeV}^2$$

$$M_Y$$
 < 1.6 GeV

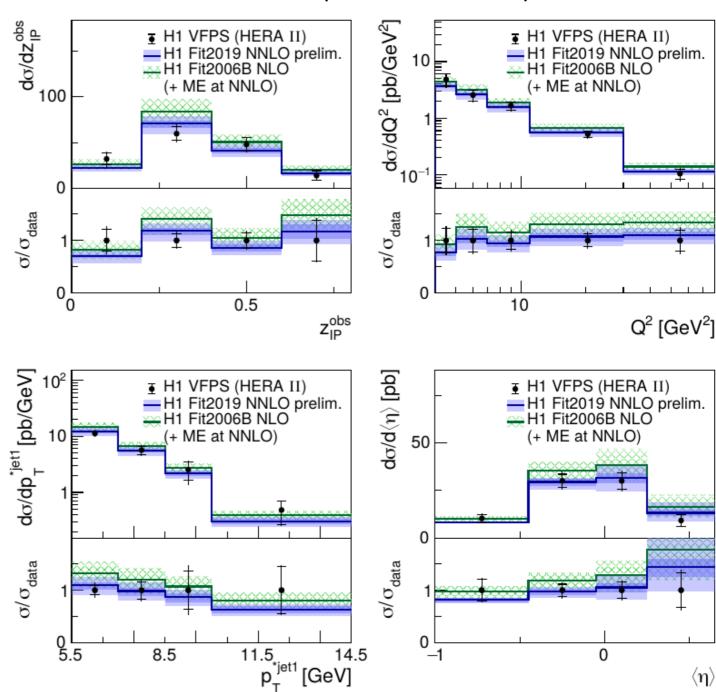
$$p_{\rm T,1}^* > 5.5~{\rm GeV}$$

$$p_{\rm T.2}^* > 4.0~{\rm GeV}$$


$$-1 < \eta_{1,2}^{\text{lab}} < 2$$

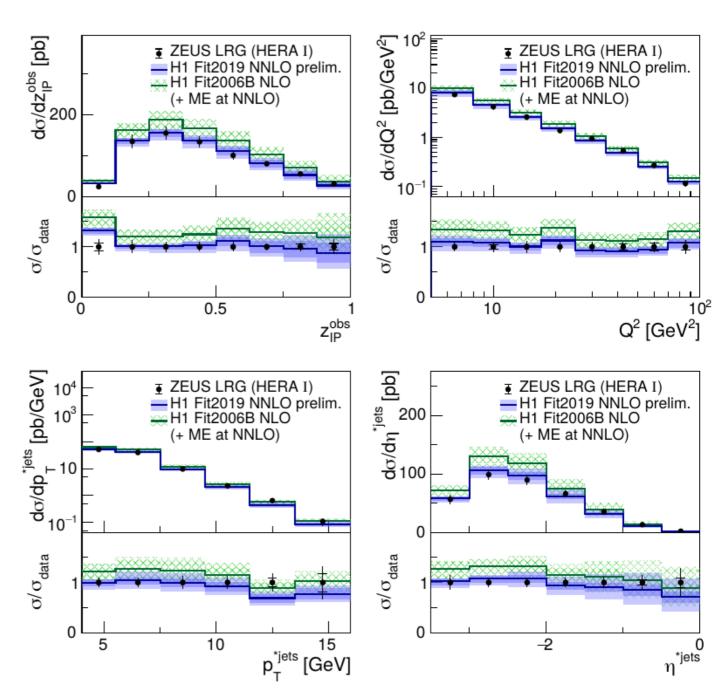
All HERA analyses are using k_T -jet algorithm (R=1) and asymmetric jet p_T cuts

Total Dijet Cross Sections


- H1 Fit2019 NNLO
 - → describes well
 the H1 HERA-II data
 + ZEUS HERA-I
 → H1 HERA-I data
 slightly below
- H1 Fit2006B NLO
 with NNLO ME
 overestimates all the
 cross sections

In addition to the total cross sections we analyzed 39 single-differential and 4 double-differential distributions

Dijet cross sections (H1 VFPS)


- The data based on Very Forward Proton Spectrometer (VFPS) do not contain any proton dissociation and are in many ways systematically independent to the LRG-based data
- Good description of the kinamatic variables
 z_{IP}, Q², p_T^{jet1}, <η>

Dijet cross sections (ZEUS LRG)

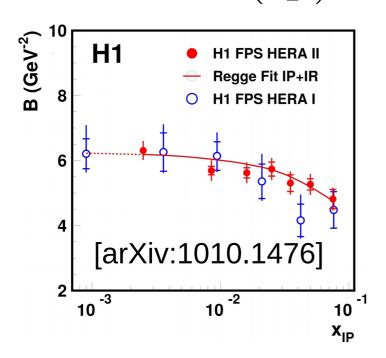
- The H1 Fit2019
 NNLO based
 predictions agree
 well with the ZEUS
 dijet data
 [arXiv:0708.1415]
- At LO the $z_{I\!\!P}^{\rm obs}$ directly related to the pomeron momentum fraction entering ME

$$z_{I\!\!P}^{
m obs} = rac{Q^2 + M_{12}^2}{Q^2 + M_X^2}$$

Conclusions

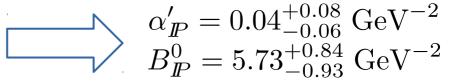
- First combined fit to the inclusive+jet DDIS DATA at NNLO
- The NNLO DPDF has lower gluon contribution compared to NLO version
- The jet data compatible with new inclusive data (at both NNLO and NLO)
 - → Factorization in diffractive DDIS up to NNLO established

Outlook:


- Release the fit at LO, NLO & NNLO
- Include more jet-related observables to the fit
- FPS data?

Backup

Flux Parametrization


Param. inspired by Regge theory (Streng and Berger):

$$f_{I\!\!P/p}(x_{I\!\!P},t) \propto \left(\frac{1}{x_{I\!\!P}}\right)^{2[\alpha_{I\!\!P}(0)+\alpha'_{I\!\!P}t]-1} \mathrm{e}^{B_{I\!\!P}^0t} \stackrel{\square}{\square} \frac{\mathrm{d}\sigma}{\mathrm{d}t} \propto \mathrm{e}^{-B|t|}$$

B-slope dependence:

$$B = B_{I\!\!P}^0 + 2\alpha_{I\!\!P}' \left(\log \frac{1}{x_{I\!\!P}}\right)$$

Uncertainties anti-correlated

• t-integrated version:

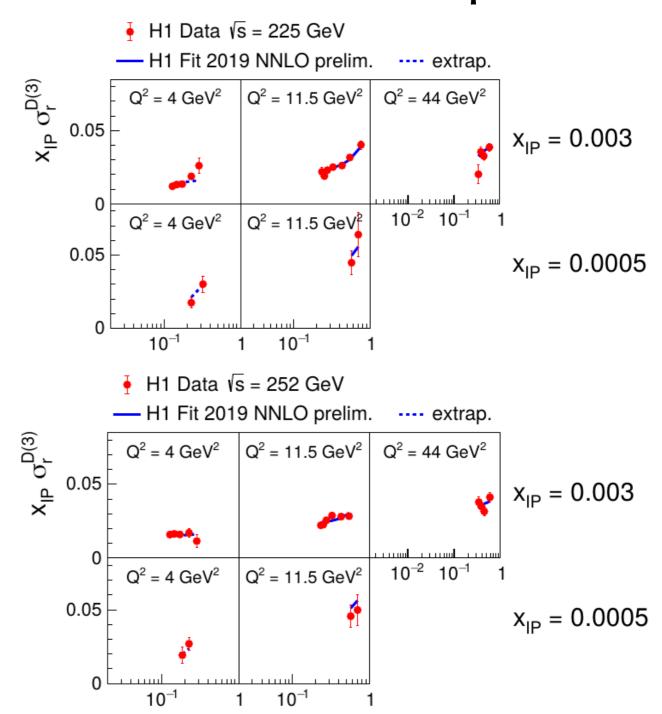
$$f_{I\!\!P/p}(x_{I\!\!P}) \propto \left(\frac{1}{x_{I\!\!P}}\right)^{2\alpha_{I\!\!P}(0)-1}$$

~1.2

$$\frac{1}{1 + 2\frac{\alpha_{IP}^{\prime}}{R^{0}}\log\frac{1}{\alpha}} \doteq$$

Fixed

$$- \int_{\mathbb{R}}^{2\alpha_{I\!\!P}} (0) - 1 - 2 \frac{\alpha_{I\!\!P}'}{B_{I\!\!P}^0}$$


Fitted data - LowE Inclusive Sample

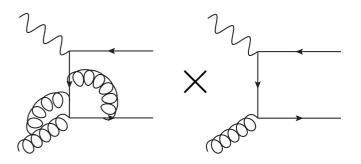
- The F₂ & F_L beam energy independent
- The reduced cross section predicted to be energy dependent:

$$\sigma_{r}^{D(3)}(\beta,Q^{2},x_{I\!\!P}) = \\ F_{2} - \frac{y^{2}}{1 + (1-y)^{2}}F_{L}$$
 since: $y = \frac{Q^{2}}{\beta x_{I\!\!P}s}$

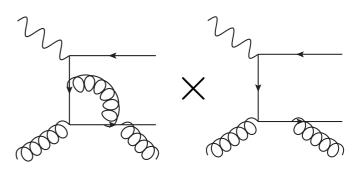
To disentangle F_2 & F_L the σ_r must be measured for several beam energies

NNLO QCD Predictions

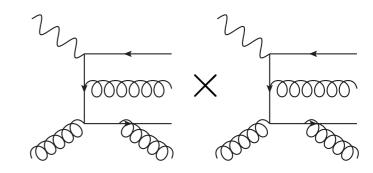
NNLOJET program based on antenna subtraction


J. Currie, T. Gehrmann, A. Huss and J. Niehues, JHEP 07 (2017) 018, [1703.05977]

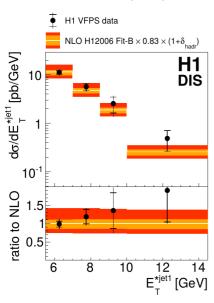
$$d\sigma(ep \to epX) = \sum_{i,n} d\sigma^{ie(n)}(x, Q^2) \otimes$$
$$\alpha_S^n \otimes f_i^D(x, Q^2, x_{IP}, t)$$


Cookbook

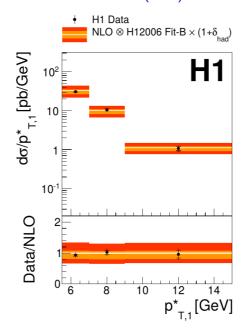
- 1) The matrix element tables precalculated by NNLOJET program (~1M CPU hours)
- 2) Then convoluted with DPDFs and α_S using **fastNLO** (<1s)
- ▼The NLO 2jet and 3jet contributions verified against Sherpa and NLOJET++


virtual-virtual

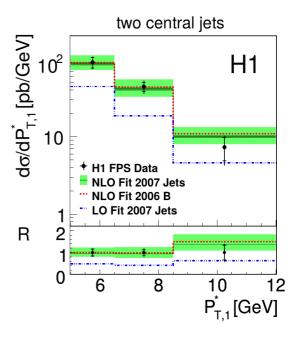
real-virtual

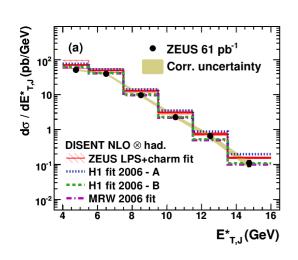


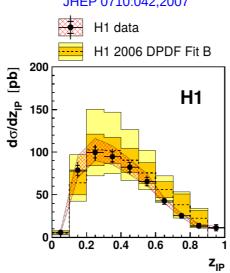
real-real

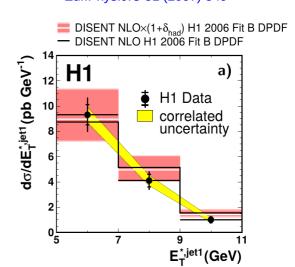


The HERA DDIS jets Legacy




JHEP 1503 (2015) 092


Eur.Phys.J.C72 (2012) 1970


Eur. Phys. J. C 52 (2007) 813-832

JHEP 0710:042,2007

Eur.Phys.J.C 51 (2007) 549

Backup

Data Set	\mathcal{L} $[ext{pb}^{-1}]$	DIS range	Dijet range	Diffractive range
H1 FPS (HERA II) [53]	156.6 (581ev)	$4 < Q^2 < 110 \text{GeV}^2$ $0.05 < y < 0.7$	$p_{\rm T}^{*,{ m jet}1} > 5{ m GeV}$ $p_{\rm T}^{*,{ m jet}2} > 4.0{ m GeV}$ $-1 < \eta_{ m lab}^{ m jet} < 2.5$	$x_{I\!\!P} < 0.1$ $ t < 1 \mathrm{GeV}^2$ $M_{\mathrm{Y}} = m_{P}$
H1 VFPS (HERA II) [54]	50 (550ev)	$4 < Q^2 < 80 \text{GeV}^2$ $0.2 < y < 0.7$	$p_{ m T}^{ m *, jet 1} > 5.5 { m GeV}$ $p_{ m T}^{ m *, jet 2} > 4.0 { m GeV}$ $-1 < \eta_{ m lab}^{ m jet} < 2.5$	$0.010 < x_{I\!\!P} < 0.024$ $ t < 0.6 {\rm GeV}^2$ $M_{\rm Y} = m_P$
H1 LRG (HERA II) [3]	290 (~15000ev)	$4 < Q^2 < 100 \text{GeV}^2$ $0.1 < y < 0.7$	$p_{ m T}^{ m *, jet 1} > 5.5 { m GeV}$ $p_{ m T}^{ m *, jet 2} > 4.0 { m GeV}$ $-1 < \eta_{ m lab}^{ m jet} < 2$	$x_{I\!\!P} < 0.03$ $ t < 1 \mathrm{GeV}^2$ $M_{\mathrm{Y}} < 1.6 \mathrm{GeV}$
H1 LRG (HERA I) [37]	51.5 (2723ev)	$4 < Q^2 < 80 \text{GeV}^2$ $0.1 < y < 0.7$	$p_{\mathrm{T}}^{*,\mathrm{jet1}} > 5.5\mathrm{GeV}$ $p_{\mathrm{T}}^{*,\mathrm{jet2}} > 4.0\mathrm{GeV}$ $-3 < \eta^{*,\mathrm{jet}} < 0$	$x_{I\!\!P} < 0.03$ $ t < 1 \mathrm{GeV}^2$ $M_{\mathrm{Y}} < 1.6 \mathrm{GeV}$
H1 LRG (300 GeV) [55]	18 (322ev)	$4 < Q^2 < 80 \text{GeV}^2$ 165 < W < 242 GeV (0.30 < y < 0.65)	$p_{\mathrm{T}}^{*,\mathrm{jet1}} > 5\mathrm{GeV}$ $p_{\mathrm{T}}^{*,\mathrm{jet2}} > 4.0\mathrm{GeV}$ $-1 < \eta_{\mathrm{lab}}^{\mathrm{jet}} < 2$ $-3 < \eta^{*\mathrm{jet}} < 0$	$x_{I\!\!P} < 0.03$ $ t < 1 {\rm GeV}^2$ $M_{ m Y} < 1.6 {\rm GeV}$
ZEUS LRG (HERA I) [56]	61 (5539ev)	$5 < Q^2 < 100 \text{GeV}^2$ 100 < W < 250 GeV (0.10 < y < 0.62)	$p_{\rm T}^{*,{ m jet}1} > 5{ m GeV}$ $p_{\rm T}^{*,{ m jet}2} > 4.0{ m GeV}$ $-3.5 < \eta^{*{ m jet}} < 0$	$x_{I\!\!P} < 0.03$ $ t < 1 \text{GeV}^2$ $M_{\rm Y} = m_P$