

Heavy flavor production at LHCb

Andrii Usachov on behalf of the LHCb Collaboration

LAL, Orsay

Selected measurements

- Observation of new resonances in $\Lambda_b^0 \pi^+ \pi^-$ NEW! LHCb-PAPER-2019-025
- Observation of an excited B_c^+ state PRL 122 (2019) 232001
- Measurement of *b*-hadron fractions at 13 TeV arXiv:1902.06794
- Measurement of the mass and production rate of \mathcal{E}_b^- baryons PRD 99 (2019) 052006
- Measurement of Υ production at 13 TeV JHEP 07 (2018) 134

Recent, omitted in this talk:

• Near-threshold $D\overline{D}$ spectroscopy and observation of a new charmonium state JHEP 07 (2019) 035

LHCb: single arm forward spectrometer

JINST 8 (2013) P08002, INT.J.MOD.PHYS.A30 (2015) 1530022

- Forward HQ production at the LHC
- Forward region $2 < \eta < 5$, ~4% of solid angle, but ~40% of HQ production x-section

- Complementary cross-section measurements and overlap in terms of rapidity and p_T
- Key detector systems for production measurements: **vertex reconstruction (VELO)**, particle identification (Muon detector, RICHs, Calorimeters), flexible trigger

Heavy flavor production: motivation

- Variety of measurements
 - Spectroscopy and production of b-baryons
 - Open heavy flavor production and polarization
 - Quarkonium production and polarization
 - Associated production
- Important study for QCD, both perturbative and non-perturbative
 - Tests of QCD predictions
 - Determination of non perturbative parameters
- Required for MC tuning → inputs for precision flavor physics measurements
- Precise knowledge of SM background for New Physics searches

Observation of new resonances in $\Lambda_h^0 \pi^+ \pi^-$

- Previous study of Λ_b^0 spectrum at LHCb using data sample of $1 fb^{-1}$ - discovery of $\Lambda_h(5912)^0$ and $\Lambda_h(5920)^0$ PRL 109 (2012) 172003
- Later confirmed by CDF PRD 88 (2013) 071101
- New results available with Run I+II data sample of 9 fb^{-1}
- Two Λ_h^0 decay modes considered: $\Lambda_h^0 \to \Lambda_c^+ \pi^-$ and $\Lambda_h^0 \to J/\psi p K$

Clear excess around 6.15 GeV in both distributions

LHCb-PAPER-2019-025

Observation of new resonances in $\Lambda_b^0 \pi^+ \pi^-$

The $\Lambda_b^0 \pi^+ \pi^-$ inv. mass distribution is studied LHCb-PAPER-2019-025 in regions of $\Lambda_b^0 \pi^+$ inv. mass: resonant $(\Sigma_b^+$ and $\Sigma_b^{*+})$ and non-resonant

Two peaks hypothesis favoured with 7σ significance

Observation of new resonances in $\Lambda_b^0 \pi^+ \pi^-$

- The mass distribution is studied in regions LHCb-PAPER-2019-025 of $\Lambda_h^0 \pi^+$ mass: resonant $(\Sigma_h^+$ and $\Sigma_h^{*+})$ and non-resonant
- Background subtracted $\Lambda_h^0 \pi^+$ inv. mass distributions:

Different decay rates via Σ_b^+ and Σ_b^{*+} for observed states

Observation of new resonances in $\Lambda_b^0 \pi^+ \pi^-$

LHCb-PAPER-2019-025

Results:

$$m_{\Lambda_{\rm b}(6152)^0} = 6152.51 \pm 0.26 \,\mathrm{MeV}$$
 $m_{\Lambda_{\rm b}(6146)^0} = 6146.17 \pm 0.33 \,\mathrm{MeV}$

$$\Delta m = 6.34 \pm 0.32 \,\mathrm{MeV}$$

$$\Gamma_{\Lambda_{\rm b}(6152)^0} = 2.11 \pm 0.81 \,\mathrm{MeV}$$

$$\Gamma_{\Lambda_{\rm b}(6146)^0} = 2.90 \pm 1.28 \,\mathrm{MeV}$$

• Possible interpretation of the new states as a doublet of $\Lambda_b(1D)^0$ states with $J^P=\frac{3}{2}^+$ and $\frac{5}{2}^+$

EPJA 51 (2015) 82 PRD 34 (1986) 2809

Observation of an excited B_c^+ state

- Two states observed by CMS PRL122 (2019) 132001
- PRL 122 (2019) 232001

- LHCb analysis: Run I+II data sample of 8.5 fb^{-1}
- Reconstructed via $B_c^{(*)}(2S) \rightarrow (B_c^+ \rightarrow J/\psi \pi^+)\pi^+ \pi^-$

Masses are measured to be

$$6841.2 \pm 0.6 \,(\text{stat}) \pm 0.1 \,(\text{syst}) \pm 0.8 \,(B_c^+) \,\text{MeV}/c^2$$

 $6872.1 \pm 1.3 \,(\text{stat}) \pm 0.1 \,(\text{syst}) \pm 0.8 \,(B_c^+) \,\text{MeV}/c^2$

 $B_{c}(2S)^{+}$ $\pi^{+}\pi^{-}$ B_{c}^{+} 0^{-+} $c\overline{b}$ B_{c}^{*+}

- \Rightarrow Consistent with expectations of $B_c(2^3S_1)$ and $B_c(2^1S_1)$ e.g. PRD 86 (2012) 094510
- ⇒ Confirms first observation by CMS

Measurement of b-hadron fractions at 13 TeV

• Data sample: part of Run II, $1.67 fb^{-1}$

- arXiv:1902.06794
- Inclusive semileptonic decays to $H_c X \mu \bar{\nu}_{\mu}$ are used to reconstruct *b*-hadrons
- 2D fit to distinguish signal and background in decays to $H_c h X \mu \bar{\nu}_{\mu}$:

Measurement of b-hadron fractions at 13 TeV

arXiv:1902.06794

• First measurement of *b*-hadron fractions at 13 TeV

$$\frac{f_s}{f_u + f_d} = 0.122 \pm 0.006$$

$$\frac{f_{A_b^0}}{f_u + f_d} = 0.259 \pm 0.018$$

Fragmentation fractions extracted as function of p_T

Fit by linear function

Fit by exponential function

Measurement of the mass and production rate of \mathcal{E}_b^- baryons PRD 99 (2019) 052006

- Run I+II data sample of $1 fb^{-1}$ at 7 TeV, $2 fb^{-1}$ at 8 TeV and 1.6 fb^{-1} at 13 TeV
- \mathcal{E}_b^- reconstructed via $\mathcal{E}_b^- \to J/\psi \mathcal{E}^-$, normalization: $\Lambda_b^0 \to J/\psi \Lambda$

• Results – first measurement of Ξ_h^- production

$$\frac{f_{\Xi_b^-}}{f_{\Lambda_b^0}} \frac{\mathcal{B}(\Xi_b^- \to J/\psi \, \Xi^-)}{\mathcal{B}(\Lambda_b^0 \to J/\psi \, \Lambda)} = (10.8 \pm 0.9 \pm 0.8) \times 10^{-2} \quad [\sqrt{s} = 7, 8 \, \text{TeV}]$$

$$\frac{f_{\Xi_b^-}}{f_{\Lambda_b^0}} \frac{\mathcal{B}(\Xi_b^- \to J/\psi \, \Xi^-)}{\mathcal{B}(\Lambda_b^0 \to J/\psi \, \Lambda)} = (13.1 \pm 1.1 \pm 1.0) \times 10^{-2} \quad [\sqrt{s} = 13 \, \text{TeV}]$$

Measurement of the mass and production rate of \mathcal{E}_b^- baryons PRD 99 (2019) 052006

• Assuming SU(3) symmetry, the fragmentation fraction is obtained

Nucl. PB326 (1989) 15
arXiv:1510.05568
PLB 751 (2015) 127
$$\frac{f_{\Xi_b^-}}{f_{\Lambda_b^0}} = (6.7 \pm 0.5 \pm 0.5 \pm 2.0) \times 10^{-2} \quad [\sqrt{s} = 7, 8 \, \text{TeV}]$$

$$\frac{f_{\Xi_b^-}}{f_{\Lambda_b^0}} = (8.2 \pm 0.7 \pm 0.6 \pm 2.5) \times 10^{-2} \quad [\sqrt{s} = 13 \, \text{TeV}]$$
due to SU(3) symetry breaking

No significant production asymmetry observed

$$A_{\text{prod}}(\Xi_b^-) = (1.1 \pm 5.6)\% \quad [\sqrt{s} = 7, 8 \,\text{TeV}],$$

 $A_{\text{prod}}(\Xi_b^-) = (-3.9 \pm 4.9)\% \quad [\sqrt{s} = 13 \,\text{TeV}].$

• The most precise measurement of \mathcal{Z}_b^- mass

$$m(\Xi_b^-) = 5796.70 \pm 0.39 \pm 0.15 \pm 0.17 \,\text{MeV}/c^2$$

Measurement of Y production at 13 TeV JHEP 07 (2018) 134

- Data sample of 277 pb^{-1} collected at $\sqrt{s} = 13 \text{ TeV}$
- Clean signals from $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S)$ using decays to $\mu^+\mu^-$

Absolute production is measured

$$\mathcal{B}(\Upsilon(1S) \to \mu^+ \mu^-) \times \sigma(\Upsilon(1S), 0 < p_{\rm T} < 15 \,{\rm GeV}/c, 2 < y < 4.5) = 4687 \pm 10 \pm 294 \,{\rm pb}$$

 $\mathcal{B}(\Upsilon(2S) \to \mu^+ \mu^-) \times \sigma(\Upsilon(2S), 0 < p_{\rm T} < 15 \,{\rm GeV}/c, 2 < y < 4.5) = 1134 \pm 6 \pm 71 \,{\rm pb}$
 $\mathcal{B}(\Upsilon(3S) \to \mu^+ \mu^-) \times \sigma(\Upsilon(3S), 0 < p_{\rm T} < 15 \,{\rm GeV}/c, 2 < y < 4.5) = 561 \pm 4 \pm 36 \,{\rm pb}$

Measurement of Y production at 13 TeV JHEP 07 (2018) 134

- p_T and y-differential and double differential cross-sections measured
- Results compared to Non Relativistic QCD prediction

The 13/8 TeV ratios measured

Summary

Significant LHCb contribution to study heavy flavour production and spectroscopy:

- Observation of new excited Λ_b^0 resonances provides tests of quark model
- Observation of excited B_c^+ resonances precision tests of lattice predictions
- Measurement of B_s^0 and A_b^0 fractions important for measurements of BR of their decay modes
- First measurement of \mathcal{Z}_b^- production and the most precise measurement of its mass
- Measurement of Υ production at 13 TeV provides tests of NRQCD

More results in progress with Run II data Stay tuned!