Measurements of heavy-flavor production at CMS

Aliya Nigamova (on behalf of the CMS Collaboration) MEPhI, Moscow aliya.nigamova@cern.ch EPS-HEP2019, Ghent, Belgium, 13.07.2019

Introduction

Heavy-flavor production studies are very important to improve understanding of QCD.

These studies are becoming more feasible at CMS because of:

- Efficient and very flexible set of dimuon triggers
- $_{ullet}$ Good resolution in p_T ~1% for central region tracker
- Remarkable vertexing efficiency
- $_{\odot}$ Over 140 fb $^{-1}$ of data is recorded for physics data analysis during Run 2

Recent results in heavy-flavor sector from CMS

- Run 2 results:
 - Observation of two excited $B_{\rm C}^+$ states and measurement of $B_{\rm C}^+$ (2S) mass in pp collisions at $\sqrt{s}=13$ TeV. (PRL 122 (2019) 132001)
- Run 1 results:
 - Study of the B⁺ \to J/ $\psi\bar{\Lambda}$ p decay in proton-proton collisions at $\sqrt{s}=8$ TeV. (CMS-PAS-BPH-18-005)
 - Measurements of correlations between J/ ψ mesons and jets produced in $\sqrt{s}=8$ TeV pp collisions. (CMS-PAS-BPH-15-003)

Observation of two excited B_{C}^{+} states and measurement of $B_{C}^{+}(2S)$ mass in pp collisions at

$$\sqrt{s} = 13$$
 TeV

[PRL 122 (2019) 132001]

S-wave B_C spectroscopy

Study focuses on $B_{C}^{+}(2S)$ and $B_{C}^{*}(2S)^{+}$ states.

- $_{\circ}$ Decay modes are: $B_{c}^{+}(2S) \to B_{c}^{+}\pi^{+}\pi^{-}$ and $B_{c}^{+*}(2S) \to B_{c}^{+*}\pi^{+}\pi^{-} \to B_{c}^{+}\pi^{+}\pi^{-}\gamma$, with a lost photon in the final state. Both $B_{c}^{+}(2S)$ and $B_{c}^{*+}(2S)$ can be observed in the same mass distribution.
- Theoretical input: [Phys.Rev.D70:054017,2004] $\Delta \text{M} = \left[\text{M}(\text{B}_c^*) \text{M}(\text{B}_c)\right] \left[\text{M}(\text{B}_c^*(2\text{S})) \text{M}(\text{B}_c(2\text{S}))\right] \approx 20 \text{ MeV} \\ \underline{\text{B}_C^*(2\text{S})^+ \text{ state will be observed at lower reconstructed mass}} \text{ because the ground states splitting is expected to be greater than for 2S states}$

Observation of two excited B_C^+ states and measurement of B_C^+ (2S) mass in pp collisions

at $\sqrt{s} = 13$ TeV

Full Run 2 dataset analysis.

- First observation of well-separated $B_{\rm C}^+(2{\rm S})$ and $B_{\rm C}^{+*}(2{\rm S})$ states, resolved at > 5σ level
- $M(B_c^+(2S)) = 6871.0 \pm 1.2(stat) \pm 0.8(syst) \pm 0.8(B_c^+) MeV$
- $\Delta M = 29.1 \pm 1.5(\text{stat}) \pm 0.7(\text{syst}) \text{ MeV}$

Latest LHCb results on Run1+Run2 data

[Phys. Rev. Lett. 122, 232001 (2019)]

CMS results were recently confirmed by LHCb collaboration:

	$B_c^*(2S)^+$	$B_c(2S)^+$
Signal yield	51 ± 10	24 ± 9
Peak ΔM value (MeV/ c^2)	566.2 ± 0.6	597.2 ± 1.3
Resolution (MeV/ c^2)	2.6 ± 0.5	2.5 ± 1.0
Local significance	6.8σ	3.2σ
Global significance	6.3σ	2.2σ

$$\begin{aligned} M(B_c^+(2S)) &= 6872.1 \pm 1.3(\text{stat}) \pm 0.1(\text{syst}) \pm 0.8(B_c^+) \text{ MeV} \\ M(B_c^*(2S)^+) &= 6841.2 \pm 0.6(\text{stat}) \pm 0.1(\text{syst}) \pm 0.8(B_c^+) \text{ MeV} \\ \Delta M &= 31.0 \pm 1.4(\text{stat}) \pm 0.0(\text{syst}) \text{ MeV} \end{aligned}$$

[CMS-PAS-BPH-15-003]

Models to describe J/ψ production

The mechanism of colorless $c\bar{c}$ state production from hadronic collisions has been a subject of extensive studies since 1974.

Overview:

- $_{\odot}$ The original approach using the color-singlet (CS) model predicted J/ ψ cross-sections significantly smaller than the Tevatron measurements
- NRQCD approach (color-singlet+color-octet amplitudes) was able to describe the Tevatron data
- $_{\rm \bullet}$ NRQCD describes ${\rm J}/\psi$ production at LHC for ${\rm p_T}>10~{\rm GeV}$

NRQCD and Fragmentation Jet Function (FJF) approach:

- $_{ullet}$ J/ ψ mesons are not produced directly but from high-p_T jet fragmentation
- The fragmentation function is decomposed in terms of NRQCD amplitudes and long-distance matrix elements (LDMEs). Depends on L and color configuration of $c\bar{c}$ pre-resonance state.
- \bullet LDME terms: ${}^1S_0^{(8)}$, ${}^3S_1^{(8)}$, ${}^3P_J^{(8)}$, ${}^3S_1^{(1)}$
- ullet Feature: ${\rm J}/\psi$ mesons are not isolated

1. What fraction of J/ψ production is a result jet fragmentation?

Results:

For events with 1 jet 84% of J/ ψ with E>15 GeV and |y|<1 are fragments of jets produced in $|\eta|<1$. When unobserved jets (p_T< 25 GeV) are taken into account \to jet fragmentation is a source of >80% of J/ ψ mesons

2. Matching data with FJF predictions.

- Unfolded data are compared with BCKL and BK predictions in three z ranges:
 0.40-0.45; 0.50-0.55; 0.60-0.65;
- $_{\odot}$ Only one NRQCD term $^1S_0^{(8)}$ using BCKL parameters is able to describe data for 3 measured ranges
- $_{\odot}$ For z>0.5 $^3S_1^{(1)}$ BK might play a role, but introduces polarization
- \bullet Further studies might eliminate ambiguity between $^3S_1^{(1)}$ BK and $^1S_0^{(8)}$ BCKL

BK and BCKL FJF - [Phys. Rev. D 96, 036020 (2017)]

Study of the B⁺ \rightarrow J/ $\psi \bar{\Lambda}$ p decay in proton-proton collisions at $\sqrt{s} = 8$ TeV

[CMS-PAS-BPH-18-005]

Previous results on B⁺ \rightarrow J/ $\psi\bar{\Lambda}$ p decay

The Belle Collaboration reported the observation of this decay in 2005

[Phys.Rev.D72:051105,2005]

Study of the B⁺ \rightarrow J/ $\psi\bar{\Lambda}$ p decay

- Using $B^+ o J/\psi K^{*+}$ decay as the normalisation channel with a similar topology:
- $\mathcal{B}(B^+ \to J/\psi \bar{\Lambda} p) = (15.07 \pm 0.81 (stat) \pm 0.40 (syst) \pm 0.86 (br.)) \times 10^{-6}$
- The most precise result to date and compatible with previous results:

PV

- PDG: $\mathcal{B}(B^+ \to J/\psi \bar{\Lambda} p) = (11.8 \pm 3.1) \times 10^{-6}$
- Belle: $\mathcal{B}(B^+ \to J/\psi \bar{\Lambda} p) = (11.7 \pm 2.8^{+1.8}_{-2.3}) \times 10^{-6}$
- Allows to study intermediate invariant masses of J/ψ + baryon system
- The masses are found to be inconsistent with pure 3-body PS with a significance > 6.1, 5.5 and 3.4 for $J/\psi p$, $J/\psi \bar{\Lambda}$ and $\bar{p}\Lambda$, respectively, including systematics

Study of the B⁺ \rightarrow J/ $\psi\bar{\Lambda}$ p decay. Model-independent approach

- Introduced by BaBar [Phys.Rev.D79:112001,2009] used by LHCb [Phys. Rev. D 92, 112009 (2015)]
- \bullet K* resonances decaying to $p\bar{\Lambda}$ final states can contribute and alter 2-body invariant mass distributions
- Their possible contributions is taken into account by measuring $\cos\theta_{K^*}$ distribution in each M(p $\bar{\Lambda}$) bin on data $\frac{dN}{d\cos\theta_{K^*}} = \sum_{j=0}^{l_{\max}} \langle P_j^U \rangle P_j(\cos\theta_{K^*})$
- and reweighting pure 3-body phase space accordingly

$$w^{i} = 1 + \sum_{j=1}^{l_{max}} \langle P_{j}^{N} \rangle P_{j}(\cos\theta_{K^{*}}^{i}) \quad l_{max} = 8, \text{ s} \le 4$$

Resonance	Mass [MeV]	Natural width [MeV]	$\int J^P$
$K_4^*(2045)^+$	2045 ± 9	198 ± 30	4+
$K_2^*(2250)^+$	2247 ± 17	180 ± 30	2-
$K_3^*(2320)^+$	2324 ± 24	150 ± 30	3+

Study of the $B^+ \to J/\psi \Lambda p$ decay. Model-independent approach

PS - ----

8 moments in $\cos \theta_{K^*}$ —

1D $\cos \theta_{K^*}$ reweighting – ----

The model-independent method is used to check the non-exotic hypothesis originated by the contributions of K* resonances to $p\bar{\Lambda}$ system.

The inclusion of first eight moments corresponding to already known resonances decaying to $p\bar{\Lambda}$ improved the description of the data in $J/\psi p$ and $J/\psi \bar{\Lambda}$ systems , the significance of incompatibility is less than 2.8 standard deviations.

→No need for additional exotic resonances

Conclusion

Presented results which demonstrate high potential of upcoming studies using full Run 2 data:

- $_{\odot}$ Observation of two excited $\rm B_C^+$ states and measurement of $\rm B_C^+(2S)$ mass in pp collisions at $\sqrt{s}=13$ TeV
 - ⇒ Well-resolved $B_c^+(2S)$ and $B_c^{+*}(2S)$ states $M(B_c^+(2S)) = 6871.0 \pm 1.2(\text{stat}) \pm 0.8(\text{syst}) \pm 0.8(B_c^+)$ MeV $\Delta M = 29.1 \pm 1.5(\text{stat}) \pm 0.7(\text{syst})$ MeV
- $_{\odot}$ Measurements of correlations between J/\$\psi\$ mesons and jets produced in $\sqrt{s}=8$ TeV pp collisions
 - ⇒ Concluded that more than 80% of J/ψ mesons are produced by jet fragmentation in the central region
- Study of the B⁺ \rightarrow J/ $\psi\bar{\Lambda}$ p decay
 - → The most precise measurement of branching fraction
 - → Study of potentially exotic intermediate states shows that no additional resonances are needed

Backup

S-wave B_C spectroscopy (before CMS results)

ATLAS

[Phys. Rev. Lett. 113, 212004 (2014)]

ATLAS

LHCb Collaboration

[J. High Energ. Phys. (2018) 2018: 138]

$$\frac{\sqrt{s} = 7 \text{ TeV}}{(0.22 \pm 0.08 \text{ (stat)})/\varepsilon_7 \quad (0.15 \pm 0.06 \text{ (stat)})/\varepsilon_8}$$

LHCb - < [0.04, 0.09]

CMS

2. Matching data with FJF predictions

Set of variables:

- Theory uses E_{jet} and $z = E_{J/\psi}/E_{jet}$ as independent variables
- FJF differential cross section for each LDME term: z<0.8

$$d\tilde{\sigma}_i(E;z_1) = \frac{d\sigma_i}{dE}|_{z_1}/\sum_{i=1}^4 \int_{.3}^{.8} \frac{d\sigma_i(E;\zeta)}{dE} \ d\zeta$$

• Experimentally, a ratio function is used:

$$\Xi(E_1,z_1) \equiv \frac{N(E_1,z_1)}{\int_{0.3}^{0.8} N(E_1,z)dz} \equiv \frac{d\tilde{\sigma}}{dEdz}|_{E_1,z_1},$$

 $\mathcal{N}_{corr}(E;z_1)$ is the number of events in $\pm \Delta z = 0.25$ about z_1 .

 $\mathcal{R}_{corr}(E; .3 - .8)$ is the number of events .3-.8 excluding $\mathcal{N}_{corr}(E; z_1)$.

Two different LDMEs sets from Bodwin, Chung, Kim and Lee (BCKL) [Phys. Rev. Lett. 113, 022001 (2014)] and Butenschoen and Kniehl (BK) [Phys. Rev. Lett. 108, 242004 (2012)] are used to compare with data (differ in production mechanisms)