## **EPS-HEP2019**



Contribution ID: 366

Type: Parallel talk

## Production of $\chi_c(i)\chi_c(j)$ pairs in proton-proton collisions in $k_t$ -factorization and collinear approaches

Saturday, 13 July 2019 12:00 (15 minutes)

The matrix elements for  $g^*g^* \to \chi_c(J_i)\chi_c(J_j)$ for off-shell gluons were derived [1]. The matrix elements are used then in the  $k_t$ -factorization approach for the  $pp \to \chi_c(J_i)\chi_c(J_j)$  reaction. Different combination of the  $chi_c$  mesons are considered. We use the Kimber-Martin-Ryskin (KMR) unintegrated gluon distributions to evaluate cross sections. We concentrate on large rapidity separation between  $\chi_c$  mesons. Several differential distributions for a selected value of the center of mass energy are calculated and shown. A feed-down from double  $\chi_c$  production to the double  $J/\psi$ channel is estimated and compared to the dominant direct production of two  $J/\psi$  quarkonia. This mechanism is important in the context of very small  $\sigma_{eff}$ found from the analysis of  $J/\psi$  production. Similar analysis is repeated for the collinear factorization approach [2]. The leading order contributions  $(2 \rightarrow 2 \text{ processes})$ are rather small, compared to the  $k_t$ -factorization result. We include higher-order contributions of  $2 \rightarrow 3$  processes with two  $\chi_c$  mesons and one gluon. Several differential distributions will be presented and discussed. Again we will focus on large rapidity distances between the  $\chi_c$  mesons. A comparison to the  $k_t$ -factorization approach will be made. Conclusions will be formulated.

1) A. Cisek, W. Sch\"afer, A. Szczurek, Phys. Rev. **D97** (2018) 114018.

2) I. Babiarz, W. Sch\"afer and A. Szczurek, arXiv:1902.08426 (hep-ph). in print in Phys. Rev. D.

**Primary authors:** SZCZUREK, Antoni (Institute of Nuclear Physics); SCHAEFER, Wolfgang (Institute of Nuclear Physics PAN)

Presenter: SCHAEFER, Wolfgang (Institute of Nuclear Physics PAN)

Session Classification: QCD and Hadronic Physics

Track Classification: QCD and Hadronic Physics