Production and modification of hadronic resonances measured with ALICE

Jihye Song
for the ALICE Collaboration
University of Houston
Outline

• Hadronic phase
• Resonances in ALICE
• Mean p_T & integrated yield
• Particle yield ratios
• Reconstruction of $\Xi(1820)$
Hadronic Phase

Inelastic Collisions
- hadron momenta and yields change

(Pseudo-)elastic Collisions
- hadron momenta change, but most yields fixed

Regeneration: pseudo-elastic scattering through resonance state
- increase in resonance yield

Re-scattering:
- elastic scattering smears out mass peak
 - reduces resonance yield

- pseudo-elastic scattering through a different resonance state
 - reduces yield of original resonance

Yields of long-lived hadrons fixed

- Free Hadrons

- Resonances have different short lifetimes
 - allow to study properties of hadronic phase in terms of re-scattering and regeneration effects

Jihye Song
Resonances in ALICE

- Inner Tracking System (ITS)
 - Silicon detectors
 - Trigger, tracking, vertex, PID (dE/dx)

- Time Projection Chamber (TPC)
 - Gas-filled ionization detector
 - Tracking, vertex, PID (dE/dx)

- Time Of Flight (TOF)
 - PID through particle time of flight

- V0A and V0C
 - Trigger, centrality/multiplicity estimator

Resonance Table

<table>
<thead>
<tr>
<th>Resonance</th>
<th>τ (fm/c)</th>
<th>Decay</th>
<th>BR</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho(770)^0$</td>
<td>1.3</td>
<td>$\pi\pi$</td>
<td>100</td>
</tr>
<tr>
<td>$K^*(892)^0$</td>
<td>4.2</td>
<td>$K\pi$</td>
<td>66.6</td>
</tr>
<tr>
<td>$\Sigma(1385)$</td>
<td>5.5</td>
<td>$\Lambda\pi$</td>
<td>87</td>
</tr>
<tr>
<td>$\Xi(1820)$</td>
<td>8.1</td>
<td>$\Lambda\kappa$</td>
<td>unknown</td>
</tr>
<tr>
<td>$\Lambda(1520)$</td>
<td>12.6</td>
<td>$p\kappa$</td>
<td>22.5</td>
</tr>
<tr>
<td>$\Xi(1530)^0$</td>
<td>21.7</td>
<td>$\Xi\pi$</td>
<td>66.7</td>
</tr>
<tr>
<td>$\phi(1020)$</td>
<td>46.4</td>
<td>KK</td>
<td>49.2</td>
</tr>
</tbody>
</table>

Year and √s NN [TeV]

<table>
<thead>
<tr>
<th>Year</th>
<th>Pb-Pb</th>
<th>Xe-Xe</th>
<th>p-Pb</th>
<th>pp</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-2011</td>
<td></td>
<td></td>
<td>2017</td>
<td>2009-2013</td>
</tr>
<tr>
<td>2015,2018</td>
<td></td>
<td></td>
<td>2016</td>
<td>2015-2018</td>
</tr>
<tr>
<td>√s NN, [TeV]</td>
<td>2.76</td>
<td>5.02</td>
<td>5.44</td>
<td>0.9, 2.76, 7, 8, 5.02, 13</td>
</tr>
</tbody>
</table>
p_T-spectra in Pb-Pb collisions

$\rho(770)^0$

$\Lambda(1520)$

$\Xi(1530)^0$

Lifetime (fm/c): $\rho(1.3) < \Lambda^*(4.2) < \Sigma^*(5.5) < \Lambda^*(12.6) < \Xi^*(21.7) < \phi(46.2)$
p_T-spectra in Pb-Pb collisions

Lifetime(fm/c): $\rho(1.3) < K^*(4.2) < \Sigma^*(5.5) < \Lambda^*(12.6) < \Xi^*(21.7) < \phi(46.2)$
p_T-spectra in Xe-Xe collisions

Lifetime (fm/c): $\rho(1.3) < K^*(4.2) < \Sigma^*(5.5) < \Lambda^*(12.6) < \Xi^*(21.7) < \phi(46.2)$
• In central Pb-Pb collisions
 - similar $\langle p_T \rangle$ for p, K^* and ϕ have been observed
 - expected from hydrodynamics as they have similar masses

• In small collision systems
 - $\langle p_T \rangle$ increases steeper and similarity of p, K^* and ϕ is broken

Jihye Song
mean $\langle p_T \rangle$

- $\langle p_T \rangle$ obtained from Pb-Pb and Xe-Xe collision are in agreement with each other
- Integrated yield normalized to $\langle dN_{ch}/d\eta \rangle$ for K^{*0} and ϕ
 - independent of collision energy and systems for pp and p-Pb collisions
Particle yield ratios

• Suppression of K^*/K in central heavy-ion collisions w.r.t. peripheral Pb-Pb(Xe-Xe), p-Pb, pp collisions
 - suggests K^* re-scattering is dominant over regeneration

• Hint of suppression in small systems at high multiplicity
 - hadronic phase also in small systems?

• No suppression ϕ/K
 - due to larger ϕ lifetime

Lifetime(fm/c): $\rho(1.3) < K^*(4.2) < \Sigma^*(5.5) < \Lambda^*(12.6) < \Xi^*(21.7) < \phi(46.2)$
Resonance to long-lived particle ratios

\(\rho^0/\pi, K^{*0}/K \) and \(\Lambda^*/\Lambda \) in Pb-Pb: suppression in central Pb-Pb collisions indicates dominance of re-scattering over regeneration for short lived resonances.

\(\Sigma^*/\Lambda \) and \(\Lambda^*/\Lambda \): flat in small systems and no energy dependence from RHIC to LHC.

\(\Xi^*/\Xi \) and \(\phi/K \): no significant centrality dependence across the different collision systems.

In most cases EPOS3 with UrQMD describes the trend qualitatively.

Lifetime (fm/c): \(\rho(1.3) < K^*(4.2) < \Sigma^*(5.5) < \Lambda^*(12.6) < \Xi^*(21.7) < \phi(46.2) \)

Jihye Song
Energy dependence: ϕ/K

- Flat behavior in wide range of energy ($\sim 10-10^4$ GeV)

- Increase for low energies due to canonical suppression
 - reproduced by statistical model calculation with strangeness correlation radius parameter $R_c = 2.2$ fm

Jihye Song
Reconstruction of $\Xi(1820)$

- First measurement of $\Xi(1820)$ from collider experiment

- Calculation from FASTSUM Collaboration shows potential parity doubling
 - signature of chiral symmetry restoration in heavy-ion collisions
 - expected signal: mass shift, width broadening or change in yield ratio between $\Xi(1820)$ and $\Xi(1530)$

Jihye Song
Conclusion & outlook

- **ALICE** has measured comprehensive set of resonance particles

- **mean p_T**
 - steeper increase in small system and similar $\langle p_T \rangle$ for p, K^0 and ϕ in central Pb-Pb collisions

- **Normalized integrated yield**
 - independent of collision energy and systems for pp and p-Pb collisions

- **particle yield ratios**
 - suppression of short-lived resonances, ρ^0, K^*0, Λ^*, has been observed in most central collisions w.r.t. small collision systems
 - no suppression observed for the longer-lived resonances, ϕ

- **Reconstruction of $\Xi(1820)$**
 - first measurement and clear signal
 - results will be compared to $\Xi(1530)$