Recent Results on Searches for Dark Matter with CMS

Isabelle De Bruyn (UW-Madison) for the CMS collaboration
Dark matter

Accumulated substantial evidence that dark matter exists

▶ bullet cluster
▶ gravitational lensing
▶ rotation of galaxies
▶ ...

[Pie chart showing composition of the universe: Dark Energy 68.3%, Dark Matter 26.8%, Atoms 4.9%]
Dark matter at colliders

- **Direct detection**: scattering of dark matter particles with nuclei
- **Indirect detection**: particles or radiation produced in the annihilation of dark matter particles
- **Collider searches**: production of DM particles and mediators
 - complement direct and indirect detection
 - many different signatures to investigate
Signatures

Dark matter particles (χ) cross the detector without leaving a trace → missing transverse energy

Trigger on events using recoiling Standard Model particles (X)

=> **mono-X signature**
More searches

- But sometimes more exotic signatures, e.g. from long-lived particles:

 \[\gamma \]

 First upper limits on final states with undetected dark photons using Higgs boson decays at the LHC!

 \[\rightarrow \text{CMS talk by A. Hart (Friday)} \]

- Looking for new resonances, e.g. dijet searches in invariant mass range from 10 GeV to almost 8 TeV, requiring different trigger strategies

 \[\rightarrow \text{CMS talk by D. Beghin (Thursday)} \]

- Focusing on models with a dark sector

 Dark photons (\(\gamma_D\)) in ZH decays:

 First upper limits on final states with undetected dark photons using Higgs boson decays at the LHC!

 \[\rightarrow \text{CMS talk by V. Sharma (Friday)} \]
CMS mono-X searches

<table>
<thead>
<tr>
<th>SM particle</th>
<th>Publication</th>
<th>Integrated luminosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higgs</td>
<td>CMS-PAS-EXO-18-011</td>
<td></td>
</tr>
<tr>
<td>Top quark(s)</td>
<td>CMS-EXO-18-010, JHEP 03 (2019) 141</td>
<td>36 fb-1</td>
</tr>
<tr>
<td></td>
<td>CMS-EXO-16-051, JHEP 06 (2018) 027</td>
<td></td>
</tr>
<tr>
<td>Photon</td>
<td>CMS-EXO-16-053, JHEP 02 (2019) 074</td>
<td></td>
</tr>
</tbody>
</table>

In this talk, focusing on 2 recent results:

Search for dark matter produced in association with a single top quark or a top quark pair in proton-proton collisions at \(\sqrt{s} = 13 \) TeV CMS-EXO-18-010

Search for dark matter particles produced in association with the Higgs boson in proton-proton collisions at \(\sqrt{s} = 13 \) TeV CMS-PAS-EXO-18-011
DM + t(tt) search

- Events categorized based on #leptons, # b-jets and #forward jets
- Main backgrounds: tt, V+jets
- Combined fit of p_T^{miss} distribution in signal and control region
DM + t(tt) search: results

Interpretation in terms of dark matter model with Dirac dark matter upper limits at 95% CL on xsec

First search at LHC for DM+t or DM+tt in scalar/pseudoscalar interactions

Up to x2 limits improvement at high mediator masses wrt previous DM+tt results
Search for mono-Higgs

Z’-2HDM:
Type-II two Higgs doublet model extended by $U(1)_{Z'}$

Baryonic Z’:
Extended SM with $U(1)_B$ with gauge boson Z'
Decay channels: $h \rightarrow bb$

- Most sensitive channel for most $m_{Z'}$ masses
- 2 different analyses using the 2 different models
- Main backgrounds: $t\bar{t}$, V+jets

Z’-2HDM analysis:
- large-radius jet, with 1 or 2 b-tagged subjets
- Higgs candidate with mass in 105-135 GeV range
- background model is fit to data in 2 sidebands of Higgs jet mass distribution
- look for bump in resonance candidate transverse mass
Decay channels: $h \rightarrow bb$

- Most sensitive channel for most $m_{Z'}$ masses
- 2 different analyses using the 2 different models
- Main backgrounds: $t\bar{t}$, $V+jets$

Baryonic Z' analysis:
- 2 large-radius jets
- MVA double b-tagging algorithm
- Higgs candidate with mass in 100-150 GeV range
- simultaneous fit of p_T^{miss} in signal region and dedicated control regions
Decay channels: $h \rightarrow \gamma\gamma$

- smaller branching fraction, but higher precision in reconstructed invariant mass
- can probe scenarios with lower missing energy
 => complementary to $h \rightarrow bb$ channel
- photon isolation not applied to photons within $\Delta R < 0.3$ of each other (boosted Higgs)
- low p_T^{miss} region optimized for baryonic Z' and high p_T^{miss} region for both models
- fit in diphoton invariant mass to extract signal yield
Decay channels: $h \rightarrow \tau\tau$

- hadronic and semi-leptonic channels ($\mu\tau_h$, $e\tau_h$, $\tau_h\tau_h$)

- smaller branching fraction but smaller background

- can probe scenarios with lower missing energy
 => complementary to $h \rightarrow bb$ channel

- signal extracted by simultaneous fit to transverse mass of missing energy and 2 τ leptons in signal and control regions
First time mono-h search performed in this decay channel!

Uses fully leptonic opposite-sign different-flavor final stat (eµ)
→ minimally affected by background (e.g. Z boson)

Main backgrounds: tt, nonresonant WW

No kinematic reconstruction of Higgs possible (ν)
→ BDT, trained for each signal model
Decay channels: $h \to ZZ$

First time mono-h search performed in this decay channel!

All-leptonic final states (4μ, $4e$, $2\mu2e$)
- easily reducible backgrounds
- fully reconstructable Higgs
- good mass resolution,
- but small branching fraction

Main backgrounds: SM Higgs (Vh), nonresonant ZZ

$Z+X$ background from non-prompt leptons inside jets:
misidentification rate estimated from data
Results

h → bb is main decay channel
ττ and γγ channels contribute at low mass
95% CL exclusion contours on σ/σ_{th} in $m_{Z'} - m_A$ (Z'-2HDM) and $m_{Z'} - m_\chi$ (baryonic Z’) plane
Comparison with direct detection

Reinterpretation of baryonic Z’ model in terms of 90% CL limits on spin-independent cross section for dark matter-nucleon scattering (following LHC DM working group recommendations)

mono-H result more stringent than direct detection limits for vector mediator at low masses
Conclusions

CMS is continuing to perform dark matter searches using many different signatures and analysis methods.

Mono-Higgs Combination
- first combination of 5 Higgs decay channels in mono-H
- first time mono-H is performed in $h \rightarrow WW$ and $h \rightarrow ZZ$ channels
- stronger limits on vector mediator than direct detection for low dark matter masses

Only 25% of Run 2 data included in the shown results

Many more full Run 2 results are coming - stay tuned!