

A new way to search for QCD Axion Dark Matter with a Dielectric Haloscope

Stefan Knirck* for the MADMAX collaboration

CEA-IRFU, Saclay, France * Max-Planck-Institut für Physik, Munich, Germany University of Hamburg, Hamburg, Germany Max-Planck-Institut für Radioastronomie, Bonn, Germany RWTH Aachen University, Aachen, Germany DESY, Hamburg, Germany University of Zaragoza, Spain

Max-Planck-Institut für Physik (Werner Heisenberg Institut)

The Strong CP-Problem

QCD allows for a term

$$\mathcal{L} = - \; heta rac{g_S}{32\pi^2} G^a_{\mu
u} \tilde{G}^{\mu
u}_a, \qquad heta = -\pi \; ... \; \pi$$

but experimentally: $|\theta| < 10^{-10}$ (neutron electric dipole moment)

The Strong CP-Problem

make θ a dynamic field: $\theta \rightarrow a(t; \mathbf{x})$ (Peccei-Quinn 1977)

$$\mathcal{L}=-~arac{g_{\mathcal{S}}}{32\pi^2}G^a_{\mu
u} ilde{G}^{\mu
u}_a~~+~~rac{1}{2}~\partial_\mu$$
a $~\partial^\mu$ a

rolldown to CP conserving limit:

Peccei-Quinn Symmetry Breaking...

The Axion - Parameterspace

The Axion - Parameterspace

 $a - - - - \checkmark \gamma$

Axion Electrodynamics

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - j^{\mu} A_{\mu} + \frac{1}{2} \partial_{\mu} a \ \partial^{\mu} a - \frac{1}{2} m_a^2 a^2 \ - \ \frac{g_{a\gamma}}{4} a \ F_{\mu\nu} \tilde{F}^{\mu\nu}$$

Solve EOM under external magnetic field \mathbf{B}_e :

$$\epsilon \nabla \cdot \mathbf{E} = \rho - g_{a\gamma} \mathbf{B}_{e} \cdot \nabla a$$

$$\nabla \times \mathbf{H} - \dot{\mathbf{E}} = \mathbf{J} + g_{a\gamma} \mathbf{B}_{e} \dot{a}$$

$$\ddot{a} - \nabla^{2} a + m_{a}^{2} a = g_{a\gamma} \mathbf{E} \cdot \mathbf{B}_{e}$$
Primakoff
process

Axion induced electric field:

$$\mathbf{E}_{a} = -\frac{g_{a\gamma}\mathbf{B}_{e}}{\epsilon}a = 1.3 \times 10^{-12} \,\mathrm{V} \,\mathrm{m}^{-1} \times \left(\frac{B_{e}}{10 \,\mathrm{T}}\right) \frac{C_{a\gamma} f_{DM}^{1/2}}{\epsilon}$$

$$P_{
m sig} = \left(B^2 Q \ V \ C_{nml}
ight) \left(g_{a\gamma\gamma}^2 m_a
ho_a
ight)$$

Q: Quality Factor, C_{nml}: mode factor

The MADMAX Idea

The MADMAX Idea

Power Boost Factor β^2

adjust disc spacings:

Wide Bandwidth Boost Factor of $10^4 - 10^5$ Possible

Power Boost Factor β^2

adjust disc spacings:

Frequency Band Tunable

Axions	Detection Idea	Booster Physics	Outlook & Conclusion

Sensitivity

Sensitivity

3D Simulations – Tilts

tilts better than $0.1\,mrad\approx 30\,\mu m/30\,cm$ required

3D Simulations – Tilts

tilts better than $0.1\,mrad\approx 30\,\mu m/30\,cm$ required

3D Simulations – Tilts

tilts better than $0.1\,mrad\approx 30\,\mu m/30\,cm$ required

3D Simulation – Surface Roughness

$10\,\mu\mathrm{m}$ unproblematic

3D Simulation – Surface Roughness

$10\,\mu\mathrm{m}$ unproblematic

3D Simulation – Surface Roughness

$10\,\mu\mathrm{m}$ unproblematic

each disk: tilted emission with angle v_x

Proof of Principle Setup

Proof of Principle Setup

MADMAX: MAgnetised Disk-and-Mirror Axion eXperiment

Probing the Boost Factor see also Eur. Phys. J. C (2019) 79: 186

4 equidistant sapphire discs

predicted electromagnetic response demonstrated ongoing: comparison with 3D simulation, more discs

Further Challanges...

Dielectric Discs $\epsilon \approx 24, \tan \delta \sim \text{few} \times 10^{-5}$

Motor R&D (e.g. Piezo)

MADMAX collaboration

Roadmap

ongoing:

 $\label{eq:magnet} \begin{array}{l} \mbox{magnet design studies: } B^2 A \approx 100 \mbox{ T}^2 \mbox{ m}^2 \\ \mbox{ (two independent partners)} \end{array}$ $\label{eq:R&D: on mechanics, LaAlO_3 dielectric plates, noise contribution of booster, receiver \\ \mbox{booster studies: } 20 \mbox{ disc seed setup, 3D simulations} \end{array}$

in 1-3 years:

20 disc prototype: $\emptyset_{\rm disc} \approx 30 \, {\rm cm}, B = 3 - 4 \, {\rm T}$ \Rightarrow first physics results

afterwards (2025?): full scale experiment

Conclusions

for more information: MADMAX collaboration white paper, Phys. Rev. Lett. 118, 091801, JCAP 1701:061,2017

Bedankt voor uw aandacht

for more information: <u>MADMAX</u> collaboration white paper, **Phys. Rev. Lett.** 118, 091801, <u>JCAP</u> 1701:061,2017 Optimizing the Boost Factor

Area under Boost Factor curve approximately conserved

Receiver System

Receiver System

with preamp @ 4K: signal down to $\sim 10^{-23}\,\text{W}$ detected

Probing the Boost Factor – Results

Predicted Electromagnetic Response Demonstrated

MADMAX: MAgnetised Disk-and-Mirror Axion eXperiment

Probing the Boost Factor – Results

Predicted Electromagnetic Response Demonstrated

Boost Factor Repeatability

errors on boost factor under control