

DarkSide-50

DarkSide-50 @ LNGS - detector overview

- Water Cherenkov detector

 (1kton of ultra pure water,
 10m tall, 11m diameter):
 passive shield against
 external radiation and active
 µ veto [80 8"-PMTs]
- Liquid scintillator detector (30 tons of PC+PPO+TMB, 4m diameter): active γs and neutron detector [110 8"-PMTs]
- LAr TPC detector (~ 50 kg of LAr in the fiducial volume)

DarkSide-50 @ LNGS - detector overview

- 35.6 cm radius, 35.6 cm height, 2.54 cm thickness.
 PTFE reflector walls coated with TPB
- 19 3" PMTs in the top and in the bottom with cold amplifiers
- Drift field: 0.2 kV/cm
- Extraction field: 2.8 kV/cm

DarkSide-50 @ LNGS - detector overview

Dual phase TPC

- PSD (f90) → See Pollman's talk
- Electroluminescence signal (S2):
 - Additional γ/n discrimination (S2/S1)
 - Radial fiducialization: S2 signal distribution among PMTs compared with maps generated using MC events → 3D reconstruction of the event

DarkSide-50 recent results

- High mass WIMP search (S1+S2)
 Physical Review D 98 (10), 102006 (2018)
- Low mass WIMP searches:
 - S2-only
 <u>Physical Review Letters 121 (8), 081307 (2018)</u>
 - Sub-GeV
 Physical Review Letters 121 (11), 111303 (2018)

High mass WIMP search

- Blind analysis: 532-days
 (16 660 kg d) exposure
- Target: low-radioactivity argon extracted from underground sources PRD 98, 102006 (2018)
- Blinding box (red solid line) drawn using early 71-days (2616 kg d) results PRD 93, 081101(R) (2016)
- Analysis goal: <0.1 background events in the to-be-designed search box
- Backgrounds:
 - ERs: β, γ, and Cherenkov+scintillation
 - NRs: neutrons, surface α

Example of background

- Neutrons: cosmogenic or (α,n) reactions
- PMTs are the main source
- Rejection strategy:
 - Multiple scatter in TPC
 - Coincidence with LSV: measured efficiency with AmC 99.64±0.04% (fraction of event surviving veto cuts)
 - Coincidence with WCD
- 0.85 0.75 0.75 0.65 Radiogenic Cosmogenic Fission candidate 50% NR acceptance 100 150 200 250 300 350 400 450 500

- Cherenkov + scintillation: γ multiple scatters in LAr and PTFE or fused-silica. Cherenkov (f₉₀≈1) moves regular scintillation into NR band.
- Rejection strategy:
 - light distribution in top PMTs
 - radial fiducialization

Let's open the box

BACKGROUND	EVENTS SURVIVING ALL THE CUTS
Cosmogenic neutrons	< 3x10 ⁻⁴
Radiogenic neutrons	< 5x10 ⁻³
Surface a	< 1x10 ⁻³
Cherenkov + scintillation	0.08
Total	0.09±0.04

Let's open the box

BACKGROUND	EVENTS SURVIVING ALL THE CUTS
Cosmogenic neutrons	< 3x10 ⁻⁴
Radiogenic neutrons	< 5x10 ⁻³
Surface a	< 1x10 ⁻³
Cherenkov + scintillation	0.08
Total	0.09±0.04

Low mass WIMP searches

- Trigger on S1 → 13 keV_{nr} threshold
 → limited sensitivity for WIMPs
 with mass <10 GeV/c²
- Trigger on S2 → Analysis threshold >0.6 keV_{nr}
- With S2-only events the existence of low mass WIMPs interacting both with nuclei or even with electrons (with background) is investigated

S2-only analysis

- S2-only signal:
 - Sensitive to single extracted electron
 - No PSD
- Acceptance: estimated by data+MC
- Fiducialization: no xy available, but use volume under inner 7 PMTs

Energy scale - S2 only

- ER energy scale obtained with ³⁷Ar
 - Provides 2 X-rays: 0.27 keV and 2.82 keV
 - t½ =35 d → no remain in the last 500 d
 data set
- NR energy scale obtained with AmBe and AmC
 - Bezrukov model fitted on calibration data
 - Difference with other measured points taken as systematic
 - Conservative assumption measured points are higher than fit: less ionization → less e- → less sensitivity

Signal and background

- Background constrained from high energy part of the spectrum
- Impurity related single electron bkg limiting analysis sensitivity
- WIMP recoil spectra modeled with ionization, energy quenching, and detector response.
- Binned profile likelihood analysis, average ionization yield dominates uncertainties! Due to lack of knowledge two assumptions about fluctuation at low recoil energy: no fluctuation and binomial

90% C.L. exclusion limit

Sub-GeV DM searches

- WIMP-electron interaction parametrized by form factor F_{DM} = F_{DM}(q) which, depending on the mass of the mediator (m_{A'}) has different asymptotic momentum (q) dependence:
 - $F_{DM} \approx 1$ (heavy mediator: $m_{A'} >> \alpha$ m_e)
 - $F_{DM} \approx 1/q^2$ (light mediator: $m_{A'} << \alpha m_e$)
- ³⁷Ar X-rays are used to convert electron recoil spectra to ionization spectra
 - Physical Review Letters 121 (11), 111303 (2018)

Sub-GeV DM searches

DarkSide-20k

DarkSide-20k@LNGS

- Sealed acrylic TPC containing 50 tonnes of UAr (20 tonnes fiducial) in a ProtoDUNE-like cryostat filled with ~700 tonnes of AAr
- 30 m² SiPMs as photosensors (8280 channels for TPC and ~3000 channels for Veto)
- Gd-doped acrylic panels as neutron veto
- Detector concept minimises internal neutron background sources and allows easy scaling to bigger detector

Light detection in DS-20k

- SiPM will replace PMTs at LAr temperature
- Combined effort between DarkSide and Fondazione Bruno Kessler (FBK)
- High S/N (~8) and PDE (~50%)
- Massive production by LFoundry and packaging in NOA (L'Aquila)
- Full production chain founded by Regione Abruzzo, Italy

- LAr Veto substitutes LSV
- Veto and TPC can stay in the same cryostat: less material nearby the TPC
- Gd-loaded PMMA shell between argon buffers:
 - PMMA moderates neutrons
 - γ's from neutron capture on Gd interact in the argon buffers and scintillation light is detected

- LAr Veto substitutes LSV
- Veto and TPC can stay in the same cryostat: less material nearby the TPC
- Gd-loaded PMMA shell between argon buffers:
 - PMMA moderates neutrons
 - γ's from neutron capture on Gd interact in the argon buffers and scintillation light is detected

- LAr Veto substitutes LSV
- Veto and TPC can stay in the same cryostat: less material nearby the TPC
- Gd-loaded PMMA shell between argon buffers:
 - PMMA moderates neutrons
 - γ's from neutron capture on Gd interact in the argon buffers and scintillation light is detected

- LAr Veto substitutes LSV
- Veto and TPC can stay in the same cryostat: less material nearby the TPC
- Gd-loaded PMMA shell between argon buffers:
 - PMMA moderates neutrons
 - γ's from neutron capture on Gd interact in the argon buffers and scintillation light is detected

- LAr Veto substitutes LSV
- Veto and TPC can stay in the same cryostat: less material nearby the TPC
- Gd-loaded PMMA shell between argon buffers:
 - PMMA moderates neutrons
 - γ's from neutron capture on Gd interact in the argon buffers and scintillation light is detected

- 4π coverage
- 10 cm thick passive Gdloaded acrylic shell to moderate and capture neutrons
- 40 cm thick inner and outer active liquid AAr volumes
- External Faraday cage to optically and electrically isolate both veto and TPC

The DarkSide cryostat

- Membrane + passive thermal insulation
- Technology extensively used at CERN for ProtoDUNE experiment
- Access and support of TPC and Veto from the top roof

Procurement of low radioactivity argon

- Urania: procurement of at least 60 tonnes of UAr from Colorado, USA (same as DS50) withe extraction rate of 250 kg/day, with 99.9% purity
- Aria: UAr transported to Sardinia, Italy for final chemical purification via a 350 m tall cryogenic distillation column in Seruci, Sardinia, Italy
 - Process ~1 tonne/day with 1000 reduction of all chemical impurities and isotopically separate ³⁹Ar from ⁴⁰Ar

Seruci-0 - prototype

Seruci-I and II

Projected sensitivity

DarkSide-LowMass

- Look for low mass WIMP using a DS-20klike detector
- Starting point for the study: DS-20k prototype at LNGS with active or passive system
- 800 kg (360 kg fiducial) depleted Ar
- Possibility to further reduce radioactivity from SiPM
- Need to characterise low energy nuclear recoils

RED

- Irradiate small LAr TPC with neutrons [p(7Li,n) reacition] and study the response for recoil parallel or orthogonal to the electric field
- Primary goal: investigate hint of directionality proposed by SCENE
- RED is the first prototype using ds-20k technologies
- Direct measurement of low energy nuclear recoil properly tuning the beam energy and the geometry setup
- Next run this summer

DarkSide-LowMass

Conclusions

- DarkSide-50 results proved LAr technology is competitive both for high- (background free) and lowmass (best sensitivity for 1.8-5.5 GeV) WIMP searches
- Ambitious dark matter search program with DarkSide-20k which is developing essential technologies on several fronts
- LAr technology is very promising to lead the path towards the neutrino floor in both high- and low-mass WIMP regions

Backup

Background ERs

- β and γ: predominant contribution from construction material. UAr has (0.73 ± 0.11)
 mBq/kg of ³⁹Ar, and (2.05 ± 0.13) mBq/kg of ⁸⁵Kr.
- Rejection strategy:
 - PSD rejection power in ROI is down to 6x10-8 for single-site ERs
 - WCD + LSV

- Cherenkov + scintillation: γ multiple scatters in LAr and PTFE or fused-silica. Cherenkov (f₉₀≈1) moves regular scintillation into NR band.
- Rejection strategy:
 - light distribution in top PMTs
 - radial fiducialization

Intensive background modelling done with a data/MonteCarlo hybrid approach - JINST 12, P10015 (2017)

Background NRs

- Neutrons: cosmogenic or (α,n) reactions
- PMTs are the main source
- Rejection strategy:
 - Multiple scatter in TPC
 - Coincidence with LSV: measured efficiency with AmC 99.64±0.04% (fraction of event surviving veto cuts)
 - Coincidence with WCD
- 0.85 0.75 0.75 0.65 Radiogenic Cosmogenic Fission candidate 50% NR acceptance 0.65 100 150 200 250 300 350 400 450 500 S1 [PE]

- α: stringent material selection constraints α emitters to Rn daughters on surfaces or in LAr (recirculation)
- Degraded in energy a can follow in NR band.
- Rejection strategy:
 - Very small or absent S2
 - S2 has long scintillation tail due to TPB scintillation

Radial cut

