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See talks by William and Felix in this session!

Introduction to Loop-tree duality

~ 3 ] Dual representation of one-loop integrals
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Characterization of singularities with LTD

~ 4 ]Location of IR singularities in the dual-space

0 Analize the dual integration region. It is obtained as the positive energy
solution of the on-shell condition:
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Rodrigo et al, JHEP11(2014)014, JHEPO2(2016)044, JHEPO8(2016)160, arXiv:1904.08389




Characterization of singularities with LTD

~ 5 ] Location of IR singularities in the dual-space

0 The application of LTD converts loop-integrals into PS ones: integration over
forward light-cones.

* Only forward-backward interferences
originate threshold or IR poles (other
propagators become singular in the
integration domain)

* Forward-forward singularities cancel among
dual contributions

* Threshold and IR singularities associated with
finite regions (i.e. contained in a compact
region)

* No threshold or IR singularity at large loop
momentum

0 This structure suggests how to perform real-virtual combination! Also, how to
overcome threshold singularities (integrable but numerically unstable)

Rodrigo et al, JHEP11(2014)014, JHEPO2(2016)044, JHEPO8(2016)160, arXiv:1904.08389



Characterization of singularities with LTD

~ 6 JLocation of IR singularities in the dual-space

0 The application of LTD converts loop-integrals into PS ones: integration over
forward light-cones.

* Only forward-backward interferences
originate threshold or IR poles (other
propagators become singular in the
integration domain)

* Forward-forward singularities cancel among
dual contributions

* Threshold and IR singularities associated with

finite regions (i.e. contained in a compact
region)

* No threshold or IR singularity at large loop
momentum
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0 This structure suggests how to perform real-virtual combination! Also, how to
overcome threshold singularities (integrable but numerically unstable)

Rodrigo et al, JHEP11(2014)014, JHEPO2(2016)044, JHEPO8(2016)160, arXiv:1904.08389



Characterization of singularities with LTD

Description of threshold singularities @ 1-loop

0 In general, the location of the singularities is given by the solutions of
t+ _ 4 (+) (+) _
AT =20 20 Hhiio=0

with 4i on-shell and ka‘ = {5 — (g5 .

0 We consider the following test functions

(1) 1 NS - - Up to 2 on-shell states
S?lj = (2m)™" Gplai; qﬂ) 0 (4i) + (i € Jj) (standard thresholds)

(1) _

ik = (271—@)_1 GD(Q@'; Qk) GD(Q?Z; Qj) S (q@) + perm. Up to 3 on-shell states

(anomalous thresholds)

0 IMPORTANT: The singular structure of scattering amplitudes is dictated by
their propagators. So, the proposed test functions are general enough to do a
proper analysis of threshold singularities.

Rodrigo et al, arXiv:1904.08389 [hep-ph]



Characterization of singularities with LTD
s JDescription of threshold singularifies @ 1-loop

0 The singular structure depends on the separation among momenta:

* Time-like separation (causal connection):

kfz — (mj +m)* >0

Physical threshold singularities are originated.
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,Z VEOUENN R
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The prescription is crucial to determine the imaginary part: it is
always +i0 and corresponds to the usual Feynman prescription! For
this configuration, LTD and FTT give equivalent descriptions!

o
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& Rodrigo et al, arXiv:1904.08389 [hep-ph]



Characterization of singularities with LTD
s JDescription of threshold singularifies @1oop

0 The singular structure depends on the separation among momenta:

* Space-like separation:

k?z — (mj — m@-)z S 0

The dual-prescription changes sign within the different contributions,

which allows a perfect cancellation of any singular behaviour.
' 95,0 G'p(gi Qj)|>\jj— —~0 — 4o G'p(g;: Qa;)|>\j;.——>0

Cancellation codified

im S — +—10

)\_&1_ OSij — O((/\@g ) ) by multiple-cuts in FTT!
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* Light-like separation:
It originates IR and threshold singularities that remain in a compact

threshold " region of the integration domain. There is a partial cancellation

among dual contributions, but IR might remain!

& Rodrigo et al, arXiv:1904.08389 [hep-ph]




Characterization of singularities with LTD

10 [ Description of threshold singularities @ 1-loop

0 Anomalous thresholds: causal (i.e. time-like separated) singularities originated
by multiple propagators going on-shell.

| 1 O(—kyio) O(k2, — (mi +m,)?)
lim S = ’ —
ATTALT—0 ik Lijk Tgk (—)\;;Jr —10k,i.0)

+) (+) (+
Lijk = ng,o)qgg,o)qfi,o)
* Intersections of two hyperboloids lead to the standard IR
and threshold singularities.

* Anomalous thresholds are originated from the intersection
of two forward (backward) and one backward (forward)
hyperboloids.

* There are not singularities for \>," = A =AT=0 m
Rodrigo et al, arXiv:1904.08389 [hep-ph]



FDU approach @ NLO

- 11| Real-virtual momentum mapping

0 Suppose one-loop scalar scattering amplitude given by the triangle (scalar

Virtual

d

O

Real

toy-modell):
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1->2 one-loop process 1->3 with uniesolved extra-parton

Add scalar tree-level contributions with one extra-particle; consider
interference terms:

P
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Generate 1->3 kinematics starting from 1->2 configuration plus the loop
three-momentum [ Il

Rodrigo et al, JHEP02(2016)044; JHEPO8(2016)160; JHEP10(2016)162



FDU approach @ NLO

- 12 | Real-virtual momentum mapping

0 Mapping of momenta: generate 1->3 real emission kinematics (3 external
on-shell momenta) starting from the variables available in the dual
description of 1->2 virtual contributions (2 external on-shell momenta and
1 free three-momentum)

v Split the real phase space into two regions, i.e. y’'; <y’, and y’, <y’ , to separate
the possible collinear singularities

v Implement an optimized mapping in each region, to allow a fully local cancellation
of IR singularities with those present in the dual terms
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Rodrigo et al, JHEPO2(2016)044; JHEPO8(2016)160; JHEP10(2016)162



FDU approach @ NLO

- 13 |Example: massive scalar three-point function

0 We combine the dual contributions with the real terms (after applying the
proper mapping) to get the total decay rate in the scalar toy-model.

0 The result agrees perfectly with 8

standard DREG. . — Analytical (DREG)
0 Massless limit is smoothly s/ 4D unsubtracted (LTD)
approached due to proper

treatment of quasi-collinear

a~ 1 r(r©)

configurations in the RV mapping

Rodrigo et al, JHEP10(2016)162



FDU approach @ NLO

14 |Example: vector boson decays

L 0 Total decay rate for a

05l / vector particle into a pair
' — v-4g . of massive quarks:
- T 4ouT | O Agreement with the
-08-  — Z-dd ! standard DREG result
S 0 Smoothly achieves the
Eb _10l | massless limit
> _ o Efficient numerical
|
' | implementation
12} / | P
- y ) | o Cancellation of UV log’s
- ’ 4 —  Analytical (DREG) . (as in DREG...)
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Rodrigo et al, JHEP10(2016)162



15 JExample:

r(M,r)

FDU approach @ NLO

Higgs decay at NLO

0.6

0.5

04!
03
02f

01F

—— Analytical (DREG)

® 4D unsubtracted (LTD)

pgy=112

H-qq

0.0
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0 Total decay rate for Higgs
into a pair of massive
quarks:

O Agreement with the
standard DREG result

O Smoothly achieves the
massless limit

0 Local version of UV
counterterms
succesfully reproduces
the expected
behaviour

o Efficient numerical
implementation

Rodrigo et al, JHEP10(2016)162



FDU approach @ NLO

O

Final remarks

The total decay-rate can be expressed using purely four-dimensional

integrands

We recover the total NLO correction, while avoiding dealing with DREG

Main advantages:

v

Direct numerical implementation (integrable functions for €=0)
With FDU

is true!
No need of tensor reduction (avoids the presence of Gram determinants,

which could introduce numerical instabilities)

Finite integral for €=0 Integrability with €=0

Smooth transition to the massless limit (due to the efficient treatment of
quasi-collinear configurations)

Mapped real-contribution used as a fully local IR counter-term for the
dual contribution!

Rodrigo et al, JHEP10(2016)162



Conclusions and perspectives
N

v Loop-tree duality allows to treat virtual and real contributions
simultaneously (loop measure expressed in Euclidean space)

v Physical interpretation of IR/UV singularities in loop integrals
v More transparent description of thresholds

v Combined virtual-real terms are integrable in four space-
time dimensions!! FDU

Perspectives:

Automation of multileg processes @ NLO (ongoing) 2-loop examples
» available!ll (Felix’s talk)

Extension of the local IR formalism to NNLO
Exploit simplifications due to easier asymptotic expansions @ NNLO (ongoing)

Carefull comparison with other schemes > “Workstop-Thinkstart meeting”

UZH, Zurich, Sep. 2016
Eur.PhysJ. C77 (2017) no.7, 471







LTD /FDU approach: multileg

19 | Real-virtual momentum mapping (GENERAL)

0 Real-virtual momentum mapping with massive particles:
o Consider 1 the emitter, r the radiated particle and 2 the spectator

0 Apply the PS partition and restrict to the only region where 1//r is
allowed (i.e. Ry = {y}, < minyy,})

0 Propose the following mapping:

e 1
pj‘ =4 Impose on-shell
plr=0—a)pf + (1 —y)ph — ¢ conditions to determine
pgu, — o ﬁ;lx, oy ﬁg mapping parameters

with p; massless four-vectors build using p; (simplify the expressions)

0 Express the loop three-momentum with the same parameterization used for
describing the dual contributions!

Repeat in each region of the partition...

Rodrigo et al, JHEP10(2016)162



LTD /FDU approach: renormalization
SoSJUV counterterms and local renormalization SRR

0 LTD must be applied to deal with UV singularities by building local
versions of the usual UV counterterms.

0 1: Expand internal propagators around the “UV propagator”

1 = L Becker, Reuschle, Weinzierl, JHEP12(2010)013
F-mPt0 iy — iy 0
2quv - kiuv + klgy —mi + i 2quv - kiuv)? _
" 1| )Y [0AY n g quv ,UV) + O ((Q%v) 5/2)

Gt — 1y + 20 (atv — 1y +10)?

0 2: Apply LTD to get the dual representation for the expanded UV
expression, and subtract it from the dual+real combined integrand.

LTD extended to deal with multiple poles
(use residue formula to obtain the dual representation)

0 3: Take into account wave-function and vertex renormalization constants
(not trivial in the massive case!)

Rodrigo et al, JHEP10(2016)162



LTD /FDU approach: renormalization
S UV counterterms and local renormalization SRR

0 Self-energy corrections with on-shell renormalization conditions

M) = dXR(p)
Sr(ph = M) =0 é‘;‘l

=0
h=M

o Wave-function renormalization constant (both IR and UV poles):

AZy(p1) = —g5Cr ffGF(ql)GF(qB) ((d 2)q1 Z+4M2 (1;1 f}i) GF(QB))

0 Vertex renormalization (only UV):

I‘fql)w = g5 CF /E(GF(qu))B [’Y” dov T duv v — daov by Ff)}

0 Important features:
O Integrated results agrees with standard UV counter-termsl

O Smooth massless limit!

Rodrigo et al, JHEP10(2016)162



