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1. Introduction 

      The aim of this talk is to study some quantum 
mechanical theorems in polar spherical coordinates, when 
the area of radial varuable is not a full space.We will see 
that in most cases problems arises when the operators in 
the Schrodinger equation are singular. 

2. Time derivative of mean values of operators  

 In quantum mechanics derivative of time-dependent 

operator  Â t  is transferred from the corresponding 
classical expression according to replacement of the 
Poison bracket by quantum commutator [1. Landau L D 
Lifshitz E M 1977 Quantum Mechanics (Oxford: 
Pergamon). 2. Messiah A. Two Volumes Bound as 
One, Quantum Mechanics, Dover Publications, 1999] 

               

ˆ ˆ
ˆˆ ,

dA A i
H A

dt t

                                  (2.1) 

If one averages (2.1) by the state function, it follows 

                      

ˆ ˆ
ˆˆ ,

dA A i
H A

dt t

                  (2.2) 
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As a rule one believes that these two operations – time 
derivative and average procedures can be interchanged. 
This is postulated as a definition [1]   

          

ˆˆ ˆ
ˆˆ ,

d AdA A i
H A

dt dt t

                  (2.3) 

We show, that is not it true in general.The derivate is              
ˆ ˆ

ˆ ˆ ˆ
d A d A

A A A
dt dt t t t

        
   

  

 (2.4) 

   If we use the time dependent Schrodinger eqation and 
its complex conjugate in the first and third terms of eq. 
(2.4) and take the Hamiltonian in the radial form 

   
2

2 2

11 2ˆ ,
2 2

l ld d
H V r t

m dr r dr mr

 
     

    
(2.5) 

and performing two-fold partial integration, we get  

         

ˆ ˆ
ˆˆ ,

d A i A
H A

dt t

                               (2.6)  

where we have obtained the additional term  
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RA
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R
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dR
RAr

m
i

r


             (2.7) 

This term is not zero in general- it depends on the 
behavior of wave function and operator at the origin.  It 

has no classical analogue ( 0 , (2.7) tends to zero) 

It is known that under general requirements that 

                                     
 

0

0
r

rR r



                             (2.8) 

(See [3. A.Khelashvili and T.Nadareishvili. Am. J. 
Phys. 79 668 (2011) 4. A. Khelashvili  and T. 
Nadareishvili. European J.Phys 35 065026 (2014). 5. 
A.Khelashvili and T. Nadareishvili.Phys. of Particles 
and Nuclear Lett. 12, 11(2015).The behavior depends on 
potential   

   Regular potentials: They behave as  

                         2

0
lim 0
r

r V r



                           (2.9) 

                            1
0

l

r
R C r


                                    (2.10) 

Satisfy (2.8) condition 

   “soft” singular potentials, for which  
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   2

0 0
0

, 0
r

r V r V V const


   
     (2.11) 

For (2.11) wave function behavior is [3-5]: 

1/2 1/2

0
lim P P

st add st add
r

R a r a r R R   


         (2.12)  

         
 2

01/ 2 2 0P l mV                       (2.13) 

For 0 1/ 2P   the second solution satisfies also 
boundary condition (2.8),so it must be retained. For 

1/ 2P   only the first solution remains.  
   Now consider of additional contribution in Eq. (2.6). 
Consider regular potentials. It is clear from Eq. (2.7) that 

the singularity of Â at the origin will be also important.               

             
  0;

1
~ˆ r

rA
                                 (2.14) 

                           



 12

0

2
1 lim

2
l

r
reg r

m

Ci
                         (2.15) 

In order (2.15) will not be diverging we must require  

                                
2 1l                            (2.16) 

For (2.16) additional term vanishes. In opposite case the 
divergent result follow- we are unable to write  (2.2). For 
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                          2 1l                                 (2.17)  

  
  






 





2

1ˆ,ˆ
ˆ

1 l
m

Ci
AH

i

t

A

dt

Ad 

         (2.18)   

So the averaging relation is not so trivial and is depends 
on singularity of operator. 

 For (2.12) for standard solution
1/2 P

st stR R a r   : 

                           
 


 P

r

st
st r

m

a
i 2

0

2

lim
2

                    (2.19) 

Here also we get 0st  zero, when  

                              2P 
                                    (2.20) 

                                      2P 
                        (2.21) 

           

  P
m

ai
AH

i

t

A

dt

Ad
st
2

ˆ,ˆ
ˆˆ










       

(2.22)  

 Conclusion: The well-known averaging relation is 
validating only in cases, when the condition (2.16) and 
(2.20) is satisfied. This’’strange’’ result is provided by 
singular character of the operator. The strangest is the 
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fact that the time derivative of average value does not 
coincide to the average of derivative of the operator 

                           


dt

Ad

dt

Ad
ˆˆ

                       (2.23)               
We see that if the operator has a “bad” singularity 
((2.17) or (2.21)), its average value is not an integral of 
motion if it even commutes with the Hamiltonian. 
Morever, many famous theorems like Ehrenfest or  
hypervirial relations may be modified.[6. Z. Ehrenfest, 
Z.Phys,Vol.45, 455 (1927);7.O.Hirschfelder,J.Chem 
Physics. 33,1462 (1960)]  
  

3. Stationary states and integrals of motion 

                                ,
i

Et
t e 


 r r                    (3.1) 

If Â  is not explicitly dependent on time, we should have  

                        

ˆ
ˆˆ , ,

dA i
H A

dt
   

                    (3.2) 

       
2 2

0 0

ˆ
ˆdA i

R HARr dr E R ARr dr
dt

 
  

  
 
      (3.3) 
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Here we have use that   is a eigenfunction of Ĥ  

  Let us consider two cases:  

(a). Â  commutes with Ĥ . Then it follows 

                         

ˆˆ
0

d AdA

dt dt
 

                             (3.4) 

So,for stationary state if time-independent Â , 
commutes with the Hamiltonian, in spite of its singular 
character, the relation (3.4) is valid, the mean value of 
this operator is conserved and is an integral of motion. 

(b) AHHA ˆˆˆˆ  Let study the integral entering (3.3) 

                    
2

0

ˆˆi
I R HARr dr


                                  (3.5) 

2 2

0 0

ˆˆi i
I HR ARr dr E R ARr dr

 
      

     
(3.6) 

                              

ˆdA

dt
 

                           (3.7) 
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When Â  is independent on time, we have               

       3 3ˆ ˆ
i i

Et Et
A e Ae d A d   

    r r r r r r
  (3.8) 

It is evident that  

                             0
dt

Ad
                                     (3.9) 

We have obtained a ’’strange’’ result: for stationary 

states, for AHHA ˆˆˆˆ  , Eq. (3.9) is valid or Â  is 

conserved, but according to Eq. (3.7)
0

ˆ


dt

Ad
. In 

this particular case this ‘strange” result is provided by 

singularity of operator Â .Therefore, we conclude from 
this result that the definition, given by Eq. (2.3), depends 
on the singularity of the operator. Remark, that this 
point was not discussed in the literature up to now. 

SOME APPLICATIONS 

4. Modified hypervirial theorems 

Comparing Eqs. (3.2) and (3.7), one derives  
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ˆˆ ,

i
H A                                     (4.1) 

So well-known hypervirial theorems should be corrected 
[8.S.T.Epstein,O.Hirschfelder,Phys.Rev.123,1495(1961
)]9.O.Hirschfelder,C.Coulson.J.Chem.Physics.36,941(1

962)] If  is a bound state eigenfunction of a 

Hamiltonian Ĥ  and if Â is an arbitrary Hermitian 
time-independent operator involving the coordinates and 

momenta, then hypervirial theorem for Â  states that 

                              
ˆˆ, , 0H A                         (4.2) 

 (4.2) must be modified and according to Eq. (4.1):  

                         
ˆˆ, ,H A i                             (4.3) 

  Some applications of the (4.3). For [8] 

                                   
1ˆ  S

rrpA                         (4.4) 

                              

1
ˆ rp

i r r

    


                       (4.5) 

From Eqs. (2.8) and (2.13) that for standard solutions  
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SP

r

st
st rSPS

m

a 








  2

0

22

lim
2

3

2


            (4.6) 

If SP 2 , then 0st , but when SP 2 , then  

                             
 3

4

22

 SS
m

ast
st


             (4.7) 

For SP 2 , st  diverges, or in this case the 
hypervirial theorem does not work.  

    For regular potentials when 2

1
 lP  

             12

0

2

, lim112
2




 Sl

r

l
lreg rll

m

C
            (4.8) 

Which survives, if  2 1S l   . In this case  

                 
  ll

m

Cl

lreg  112
2

22

,


                  (4.9) 

So the modified hypervirial theorems for the Coulomb 

r

e
V

2

 and oscillator potentials 
22

2
r

m
V  have the forms 
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     lSl
sss Cl

m
rls

m

s
rsersE 2,1

22
2

222
2

12 12
2

12
4

)12()1(2 
  

 (4.10) 

    lSl
sss Cl

m
rls

m

s
rsmrsE 2,1

22
2

222
2

22 12
2

)12(
4

)2()1(2 
   

(4.11)   

Where  rRrC
l

l

r
l






0
lim  

5. Modification of the Ehrenfest theorem  

If the operator of radial momentum  

                      





 




rri

pA r

1
ˆˆ 

                         (5.1)  

substitute into Eq. (2.6), we obtain 

                         str
r pH

i

dt

pd
 ˆ,ˆˆ

                   (5.2)   

                             
12

0

22

lim
2

1

2









  P

r

st
st rP

m

a 
     (5.3) 

 For 2 1P   0st  , while for 2 1P  , it diverges. 

But for 2 1P   it survives  
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                                 m

ast
st 2

22
                             (5.4) 

So for singular potential the usual Ehrenfest theorem  

                                  r
r pH

i

dt

pd
ˆ,ˆˆ


                    (5.5) 

is applicable only in the first case 2 1P  .In other cases 
the additional term (5.4) appears or has not place at all. 
In the traditional textbooks this fact is not mentioned.                

                          
rr Fi

mr

ll
ipH 






3

2 1
ˆ,ˆ

                  (5.6) 

 rF  is a radial force. Ehrenfest modified theorem 

                
 

str
r F

rm

ll

dt

pd





3

11
        (5.7)  

   This relation is a new one.  

  For regular potentials 1/ 2P l  , only in case 

0l   it follows 0reg  . But  for 0l   we have  

                              m

C
reg 2

22
0

                             (5.8) 
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So for regular potentials the usual Ehrenfest theorem is 

valid only in the case 0l  , but for  0l   there 
appears an extra term (5.8).   

    Now let us show that Eq. (5.7) gives correct results for 
Coulomb potential.  

  0l  . In this case 0reg  .  In [10.U.Roy. 
Arxiv:0704.0373.(2007).11.U.Roy.Arxiv:0706.0924.(20
08).] right-hand side of theorem consist only forces  

 
3

1 1
r

l l
F

m r





 : two forces compensate each other.  

     0l   is more interesting. We have no centrifugal 
term, the additional term is given by (5.8),  

                         m

C
F

dt

pd
r

r

2

22
0                     (5.9) 

                         2
0

3

22

an

e
Fr 

                               (5.10) 

In stationary case the left-hand side of (5.10) must be 
zero.  So we should have  
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2 2 2
1

3 2
0

2

2

C e

m n a



                                 (5.11) 

And it follows a correct expression for Bohr’s first orbit 

radius  

2

0 2
a

me



  

    We conclude that in Eq. (5.7) the term st  must 
present necessarily for deriving correct results, which 

is absent in [10-11]. For
ˆ ˆA r  we find  

                          0lim
2

12

0

22

 



P

r

st
st r

m

a
i


         (5.12) 

 because 0P  .  It vanishes also for regular 

potentials, because for them 1/ 2 0P l   . So  

                                
 rH

i

dt

rd
ˆ,ˆˆ




                  (5.13) 

both for regular as well as singular potentials 

                               m

p

dt

rd r
ˆ

                            (5.14) 
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 The obtained results are understandable, because the 
momentum operator is singular at the origin in spite of 
the coordinate operator.  

6. Conclusions  

1) We considered an influence of the restricted region 
in 3-dimensional space in the ordinary quantum 
mechanics, where the radial wave function is defined on a 
semi-space. Therefore the boundary behavior of radial 
function contributes to the several fundamental 
relations. The additional contributions appear also 
from singular behavior of operators. The last fact was 
not discussed earlier.  

 2) We derived the explicit algorithm of calculation of 
this extra term and investigated conditions, when it 
changes fundamental relations.  

3)  Application to several known problems shows that the 
inclusion of the extra term is necessary in order to 
avoid some misunderstandings.  

We believe that the above developed formalism should 
have many other application also, especially, in derivation 
of uncertainty relations.   
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