

Off-shell Jacobi currents within the loop-tree duality

William J. Torres Bobadilla Institut de Física Corpuscular Universitat de València - CSIC

In collaboration with:

P. Mastrolia, A. Primo ,U. Schubert; J. Llanes, G. Rodrigo.

EPS-HEP 2019 11 July 2019 Ghent, Belgium

Outline

- Colour decomposition
- O Colour-Kinematics duality
 - C/K duality @ tree-level in d
 - Integral relations @1L
- Conclusions/Outlook

What are they?

Where do they appear?

What are they?

Where do they appear?

Electromagnetism

Electric and magnetic field

Optics
Intensity of light (wave)

Quantum Mechanics

 $\langle \psi_{\mathrm{out}} | \psi_{\mathrm{in}} \rangle$

Quantum Field theory

 $\langle \psi_{\mathrm{out}} | S | \psi_{\mathrm{in}} \rangle$

What are they?

Where do they appear?

Electromagnetism

Electric and magnetic field

Optics

Intensity of light (wave)

Ouantum M

Quantum Mechanics

 $\langle \psi_{
m out} | \psi_{
m in} \rangle$

Quantum Field theory

 $|\psi_{
m out}|S|\psi_{
m in}\rangle$

What are they?

Where do they appear?

litude(x

Electromagnetism

Electric and magnetic field

Optics

Intensity of light (wave)

Quantum Mechanics

 $\langle \psi_{
m out} | \psi_{
m in} \rangle$

Quantum Field theory

 $|\psi_{
m out}|S|\psi_{
m in}\rangle$

Zur Quantenmechanik der Stoßvorgänge (In German)

On the quantum mechanics of collisions

Max Born. 1926. 5 pp.

Published in **Z.Phys. 37 (1926) no.12, 863-867**

DOI: 10.1007/BF01397477

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote

Detailed record - Cited by 73 records 50+

Scattering Amplitudes

* Particle interactions

$$1 + 2 \rightarrow 3 + 4$$
2->2 scattering

The simplest process

* Amplitudes ~ Feynman diagrams

••

Perturbation expansion

Scattering Amplitudes

* Particle interactions

$$1 + 2 \rightarrow 3 + 4$$
2->2 scattering

The simplest process

* Amplitudes ~ Feynman diagrams

Perturbation expansion

Scattering Amplitudes

* Particle interactions

ties ~ Feynman diagrams

one-loop

Dyson series

Perturbation expansion

William J. Torres Bobadilla

Colour decomposition

In QCD any amplitude can be decomposed as

Primitive amplitudes depends on Lorentz variables only Can contain traces or products of generators T

At tree-level

For the **n**-gluon tree-level amplitude, the **colour decomposition** is

$$\mathcal{A}_{\mathbf{n}}^{\mathsf{tree}}\left(\left\{k_{i}, a_{i}, h_{i}\right\}\right) = g^{n-2} \mathsf{Tr}\left(T^{a_{1}} T^{a_{2}} \cdots T^{a_{n}}\right) A_{\mathbf{n}}^{\mathsf{tree}}\left(1^{h_{1}}, 2^{h_{2}}, \dots, n^{h_{n}}\right) \ + \ \mathsf{all} \ \ \mathsf{non-cyclic} \ \ \mathsf{permutations}$$

Properties between amplitudes

Reflection invarianceCyclic invariance

→ (n-1)! Independent amplitudes

$$\mathcal{A}_n^{\text{tree}}(\{p_i, h_i, a_i\}) = g^{n-2} \sum_{\sigma \in S_n/Z_n} \text{Tr}(T^{a_{\sigma(1)}} \dots T^{a_{\sigma(n)}}) A_n^{\text{tree}}(\sigma(1^{h_1}), \dots, \sigma(n^{h_n}))$$

Colour decomposition

In QCD any amplitude can be decomposed as

Primitive amplitudes depends on Lorentz variables only

Can contain traces or products of generators T

At tree-level

An alternative representation

[Del Duca, Frizzo and Maltoni (1999)] [Del Duca, Dixon and Maltoni (1999)]

$$\mathcal{A}_{n}^{\text{tree}}(\{p_{i},h_{i},a_{i}\}) = (ig)^{n-2} \ f^{a_{1}a_{2}x_{1}} f^{x_{1}a_{3}x_{2}} \cdots f^{x_{n-3}a_{\sigma_{n-1}}a_{b}} A_{n}^{\text{tree}}(1^{h_{1}},\sigma(2^{h_{2}}),\ldots,n^{h}) + \text{all non-cyclic permutations}$$

Properties between amplitudes

ween amplitudes
Ween amplitudes
Kleiss-Kuijf relations
$$A_n^{\text{tree}}(1,\alpha_1,...,\alpha_j,n,\beta_1,...,\beta_{n-2-j}) = (-1)^{n-2-j} \sum_{\sigma \in \vec{\alpha} \sqcup \vec{\beta}^T} A_n^{\text{tree}}(1,\sigma_1,...,\sigma_{n-2-j},n)$$

→ (n-2)! Independent amplitudes

[Kleiss and Kuijf (1989)]

$$\mathcal{A}_n^{\text{tree}}(\{p_i, h_i, a_i\}) = (ig)^{n-2} \sum_{\sigma \in S_{n-2}} f^{a_1 a_2 x_1} f^{x_1 a_3 x_2} \cdots f^{x_{n-3} a_{\sigma_{n-1}} a_b} A_n^{\text{tree}}(1^{h_1}, \sigma(2^{h_2}), \dots, n^h)$$

Jacobi Relation (colour)

Write QCD amplitudes in terms of cubic graphs

$$\mathcal{A}_n = g^{n-2} \sum \frac{n_i c_i}{D_i}$$

$$\mathcal{A}_4(p_1, p_2, p_3, p_4) = c_1 \frac{n_1}{P_{23}^2 - \mu^2} + c_2 \frac{n_2}{P_{12}^2} + c_3 \frac{n_3}{P_{24}^2 - \mu^2}$$

- Satisfy automatically for 4-point tree amplitudes $n_s = n_t n_u$ [Zhu (1980)]
- For higher multiplicity, is not trivially satisfied [Bern, Carrasco, Johansson (2008),(2010)]

 [Bern, Carrasco, Johansson (2008),(2010)]

 [Bern, Dennen, Huang, Kiermaier (2010)], [Boels, Isermann (2012)]
- Bern-Carrasco-Johansson relations
 [Mastrolia, Primo, Schubert, W.J.T. (2015)]

$$\sum_{i=3}^{n} \left(\sum_{j=3}^{i} s_{2j}\right) A_n^{\text{tree}}(1,3,\ldots,i,2,i+1,\ldots,n) = 0$$
(n-3)! Independent amplitudes

- Relations between kinematic numerators
- Provides symmetries among amplitudes
- Strong Connection between gravity and Yang-Mills amplitudes
- ☑ Construction of gravity from knowledge of Yang-Mills amplitudes

Construct an off-shell current

[Llanes, Rodrigo, W.J.T. (2017)]

[Bern, Carrasco, Johansson (2008),(2010)]

[de la Cruz, Kniss, Weinzierl (2015),(2016)]

[Johansson, Ochirov (2014),(2015)]

At multi-loop level or higher-points

[Mastrolia, Primo, Schubert, W.J.T. (2015)]

External particles become internal

$$egin{aligned} u\left(p_{i}
ight),v\left(p_{i}
ight)
ightarrow p_{i} \ & \ arepsilon^{\mu_{i}}\left(p_{i}\,;q_{i}
ight)
ightarrow\Pi^{\mu_{i}
u_{i}}\left(p_{i}\,;q_{i}
ight) \end{aligned}$$

Propagator in axial gauge

Numerator built from the J-block is decomposed in terms of squared momenta

$$\begin{split} \left(N_{\rm g}^{\rm loop}\right)_{\alpha_1...\alpha_4} &= J^{\mu_1..\mu_4}\Pi_{\mu_1\alpha_1}(p_1,q_1)\,\Pi_{\mu_2\alpha_2}(p_2,q_2)\,\Pi_{\mu_3\alpha_3}(p_3,q_3)\,\Pi_{\mu_4\alpha_4}(p_4,q_4)\,, \\ \left(N_{\rm g}^{\rm loop}\right)_{\alpha_1...\alpha_4} &= \sum_{i=1}^4 p_i^2 (A_g^i)_{\alpha_1...\alpha_4} + \sum_{\substack{i,j=1\\i\neq j}}^4 p_i^2 p_j^2 (C_g^{ij})_{\alpha_1...\alpha_4}. & C_g = C_g(\{p_i\}) \end{split}$$

At multi-loop level or higher-points

[Mastrolia, Primo, Schubert, W.J.T. (2015)]

External particles become internal

$$egin{aligned} u\left(p_{i}
ight),v\left(p_{i}
ight)
ightarrow p_{i} \ & \ arepsilon^{\mu_{i}}\left(p_{i}\,;q_{i}
ight)
ightarrow\Pi^{\mu_{i}
u_{i}}\left(p_{i}\,;q_{i}
ight) \end{aligned}$$

Propagator in axial gauge

Numerator built from the J-block is decomposed in terms of squared momenta

Any loop diagram built from the J-block can be written as the sum of diagrams with one or two propagators less.

At multi-loop level or higher-points

[Mastrolia, Primo, Schubert, W.J.T. (2015)]

External particles become internal

$$egin{aligned} u\left(p_{i}
ight),v\left(p_{i}
ight)
ightarrow p_{i} \ & \ arepsilon^{\mu_{i}}\left(p_{i}\,;q_{i}
ight)
ightarrow\Pi^{\mu_{i}
u_{i}}\left(p_{i}\,;q_{i}
ight) \end{aligned}$$

Propagator in axial gauge

Numerator built from the J-block is decomposed in terms of squared momenta

Any loop diagram built from the J-block can be written as the sum of diagrams with one or two propagators less.

=0

★ By imposing on-shellness of the four particles

[Llanes, Rodrigo, W.J.T. (2017)]

Decompose off- into on-shell momenta

Extract full dependence on the off-shell momenta

$$p_i^{\alpha} = r_i^{\alpha} + \frac{p_i^2}{2q \cdot r_i} q^{\alpha} \quad \longrightarrow \quad$$

$$p_{i}^{\alpha} = r_{i}^{\alpha} + \frac{p_{i}^{2}}{2q \cdot r_{i}} q^{\alpha} \qquad \sum_{\lambda=1}^{d_{s}-2} \varepsilon_{\lambda(d_{s})}^{\alpha} (p_{i}) \varepsilon_{\lambda(d_{s})}^{*\beta} (p_{i}) = \sum_{\lambda_{i}=1}^{d_{s}-2} \varepsilon_{i}^{\alpha} \varepsilon_{i}^{*\beta} + \frac{p_{i}^{2}}{(r_{i} \cdot q)^{2}} q^{\alpha} q^{\beta}, \\ \sum_{\lambda=1}^{2^{(d_{s}-2)/2}} u_{\lambda(d_{s})} (p_{i}) \bar{u}_{\lambda(d_{s})} (p_{i}) = \sum_{\lambda_{i}=1}^{2^{(d_{s}-2)/2}} u_{i} \bar{u}_{i} + \frac{p_{i}^{2}}{2(r_{i} \cdot q)} q.$$

Completeness relations

Construct multi-loop numerator

$$N_{\rm g} = N_{\rm g\,\mu_1\dots\mu_4} X^{\mu_1\dots\mu_4} , \quad N_{\rm g\,\mu_1\dots\mu_4} = J_{\rm g}^{\nu_1\dots\nu_4} \Pi_{\mu_1\nu_1} \left(p_1,q\right)\dots\Pi_{\mu_4\nu_4} \left(p_4,q\right) .$$

Residual kinematic dependence

Numerator is decomposed in product of squared momenta

$$N_{\rm g}^{\nu_1 \dots \nu_4} = \frac{1}{2} \sum_{i,j,k,l=1}^{4} \epsilon_{ijkl} \, p_i^2 \left(A_{ijkl} \, \mathcal{E}_{ij}^{\nu_i \nu_j} \mathcal{E}_{kl}^{\nu_k \nu_l} + B_{ijkl} \, \mathcal{E}_{jk}^{\nu_j \nu_k} \, \mathcal{Q}_l^{\nu_i \nu_l} + C_{ijkl} \, p_j^2 \, \mathfrak{q}^{\nu_i \nu_j} \mathcal{E}_{kl}^{\nu_k \nu_l} \right) \,,$$

A,B and **C** are completely independent of p_i^2

[Llanes, Rodrigo, W.J.T. (2017)]

Decompose off- into on-shell momenta

Extract full dependence on the off-shell momenta

$$p_i^{\alpha} = r_i^{\alpha} + \frac{p_i^2}{2q \cdot r_i} q^{\alpha} \longrightarrow$$

$$p_{\boldsymbol{i}}^{\boldsymbol{\alpha}} = r_{\boldsymbol{i}}^{\boldsymbol{\alpha}} + \frac{p_{\boldsymbol{i}}^{2}}{2q \cdot r_{\boldsymbol{i}}} q^{\boldsymbol{\alpha}} \qquad \sum_{\lambda=1}^{d_{s}-2} \varepsilon_{\lambda(d_{s})}^{\alpha} (\boldsymbol{p_{i}}) \varepsilon_{\lambda(d_{s})}^{*\beta} (\boldsymbol{p_{i}}) = \sum_{\lambda_{i}=1}^{d_{s}-2} \varepsilon_{i}^{\alpha} \varepsilon_{i}^{*\beta} + \frac{p_{\boldsymbol{i}}^{2}}{(r_{i} \cdot q)^{2}} q^{\alpha} q^{\beta}, \\ \sum_{\lambda=1}^{2^{(d_{s}-2)/2}} u_{\lambda(d_{s})} (\boldsymbol{p_{i}}) \bar{u}_{\lambda(d_{s})} (\boldsymbol{p_{i}}) = \sum_{\lambda_{i}=1}^{2^{(d_{s}-2)/2}} u_{i} \bar{u}_{i} + \frac{p_{\boldsymbol{i}}^{2}}{2(r_{i} \cdot q)} \boldsymbol{\alpha}.$$

Completeness relations

Construct multi-loop numerator

$$N_{\rm g} = N_{\rm g\,\mu_1\dots\mu_4} X^{\mu_1\dots\mu_4} , \quad N_{\rm g\,\mu_1\dots\mu_4} = J_{\rm g}^{\nu_1\dots\nu_4} \Pi_{\mu_1\nu_1} (p_1,q) \dots \Pi_{\mu_4\nu_4} (p_4,q) .$$

Residual kinematic dependence

Numerator is decomposed in product of squared momenta

$$N_{\mathbf{g}}^{\nu_1 \dots \nu_4} = \frac{1}{2} \sum_{i,j,k,l=1}^{4} \epsilon_{ijkl} \, \mathbf{p}_i^2 \left(A_{ijkl} \, \mathcal{E}_{ij}^{\nu_i \nu_j} \mathcal{E}_{kl}^{\nu_k \nu_l} + B_{ijkl} \, \mathcal{E}_{jk}^{\nu_j \nu_k} \, \mathcal{Q}_l^{\nu_i \nu_l} + C_{ijkl} \, \mathbf{p}_j^2 \, \mathfrak{q}^{\nu_i \nu_j} \mathcal{E}_{kl}^{\nu_k \nu_l} \right) \,,$$

A,B and **C** are completely independent of p_i^2

What about $p_i^2 p_i^2 p_k^2$ and $p_i^2 p_i^2 p_k^2 p_l^2$ contributions?

[Llanes, Rodrigo, W.J.T. (2017)]

Decompose off- into on-shell momenta

Extract full dependence on the off-shell momenta

$$p_i^{\alpha} = r_i^{\alpha} + \frac{p_i^2}{2q \cdot r_i} q^{\alpha} \longrightarrow$$

$$p_{i}^{\alpha} = r_{i}^{\alpha} + \frac{p_{i}^{2}}{2q \cdot r_{i}} q^{\alpha} \qquad \sum_{\lambda=1}^{d_{s}-2} \varepsilon_{\lambda(d_{s})}^{\alpha} (p_{i}) \varepsilon_{\lambda(d_{s})}^{*\beta} (p_{i}) = \sum_{\lambda_{i}=1}^{d_{s}-2} \varepsilon_{i}^{\alpha} \varepsilon_{i}^{*\beta} + \frac{p_{i}^{2}}{(r_{i} \cdot q)^{2}} q^{\alpha} q^{\beta}, \\ \sum_{\lambda=1}^{2^{(d_{s}-2)/2}} u_{\lambda(d_{s})} (p_{i}) \bar{u}_{\lambda(d_{s})} (p_{i}) = \sum_{\lambda_{i}=1}^{2^{(d_{s}-2)/2}} u_{i} \bar{u}_{i} + \frac{p_{i}^{2}}{2(r_{i} \cdot q)} q.$$

Completeness relations

Construct multi-loop numerator

$$N_{\rm g} = N_{{\rm g}\,\mu_1...\mu_4} X^{\mu_1...\mu_4}, \quad N_{{\rm g}\,\mu_1...\mu_4} = J_{\rm g}^{\nu_1...\nu_4} \Pi_{\mu_1\nu_1} (p_1(q))...\Pi_{\mu_4\nu_4} (p_4(q)).$$

Residual kinematic dependence

Same reference momentum qfor all internal gluons!

Numerator is decomposed in product of squared momenta

$$N_{\mathrm{g}}^{\nu_{1}\dots\nu_{4}} = \frac{1}{2} \sum_{i,j,k,l=1}^{4} \epsilon_{ijkl} \, p_{i}^{2} \left(A_{ijkl} \, \mathcal{E}_{ij}^{\nu_{i}\nu_{j}} \mathcal{E}_{kl}^{\nu_{k}\nu_{l}} + B_{ijkl} \, \mathcal{E}_{jk}^{\nu_{j}\nu_{k}} \, \mathcal{Q}_{l}^{\nu_{i}\nu_{l}} + C_{ijkl} \, p_{j}^{2} \, \mathfrak{q}^{\nu_{i}\nu_{j}} \mathcal{E}_{kl}^{\nu_{k}\nu_{l}} \right) \,,$$

$$\boldsymbol{A,B} \text{ and } \boldsymbol{C} \text{ are completely independent of } \boldsymbol{p}_{i}^{2}$$

What about $p_i^2 p_j^2 p_k^2$ and $p_i^2 p_j^2 p_k^2 p_l^2$ contributions?

One-loop example

[Llanes, Rodrigo, W.J.T. (2017)]

$$\int \frac{d^{d}\ell}{(2\pi)^{d}} \frac{\left(\begin{array}{c} \frac{1}{\sqrt{2\pi}} \\ 0 \end{array} \right)}{D_{0}D_{1}D_{2}} = \int \frac{d^{d}\ell}{(2\pi)^{d}} \frac{1}{D_{0}D_{1}D_{2}} \left[-n\left(\begin{array}{c} -n\left(\end{array}{c} -n\left(\begin{array}{c} -n\left(\end{array}{c} -n\left(\begin{array}{c} -n\left(\begin{array}{c} -n\left(\begin{array}{c} -n\left(\end{array}{c} -n\left(\begin{array}{c} -n\left(\begin{array}{c} -n\left(\end{array}{c} -n\left(\begin{array}{c} -n\left(\begin{array}{c} -n\left(\begin{array}{c} -n\left(\end{array}{c} -n\left(\end{array}{c} -n\left(\begin{array}{c} -n\left(\end{array}{c} -n\left(\begin{array}{c} -n\left(\end{array}{c} -n\left(\end{array}{c} -n\left(\end{array}{c} -n\left(\begin{array}{c} -n\left(\end{array}{c} -n\left(\end{array}{c} -n\left(\end{array}{c} -n\left(\begin{array}{c} -n\left(\end{array}{c} -n\left(\end{array}{c} -n\left(\begin{array}{c} -n\left(\end{array}{c} -n\left(\end{array}{c} -n\left(\begin{array}{c} -n\left(\end{array}{c} -n\left(\end{array}{c} -n\left(\end{array}{c} -n\left(\begin{array}{c} -n\left(\end{array}{c} -n\left(\end{array}{c} -n\left(\begin{array}{c} -n\left(\end{array}{c} -n\left(-n\left() -n\left(\end{array}{c} -n\left(\end{array}{c} -n\left(-n\left() -n\left(\end{array}{c} -n\left() -n\left(\end{array}{c} -n\left() -n\left() -n\left() -n$$

From string theory

$$\int \frac{d^{d}\ell}{(2\pi)^{d}} \left[\frac{1}{\ell^{2}(\ell+p_{12})^{2}(\ell-p_{4})^{2}} n \begin{pmatrix} p_{2} \\ p_{1} \end{pmatrix} J \begin{pmatrix} p_{3} \\ p_{4} \end{pmatrix} - \frac{1}{\ell^{2}(\ell+p_{2})^{2}(\ell+p_{23})^{2}} n \begin{pmatrix} p_{4} \\ p_{1} \end{pmatrix} J \begin{pmatrix} p_{2} \\ p_{3} \end{pmatrix} + \frac{1}{\ell^{2}(\ell+p_{2})^{2}(\ell-p_{4})^{2}} n \begin{pmatrix} p_{3} \\ p_{1} \end{pmatrix} J \begin{pmatrix} p_{4} \\ p_{2} \end{pmatrix} + \frac{1}{s_{12}\ell^{2}(\ell+p_{12})^{2}} n \begin{pmatrix} p_{2} \\ p_{1} \end{pmatrix} J \begin{pmatrix} p_{3} \\ p_{4} \end{pmatrix} - \frac{1}{s_{23}(\ell+p_{1})^{2}(\ell-p_{4})^{2}} n \begin{pmatrix} p_{4} \\ p_{1} \end{pmatrix} J \begin{pmatrix} p_{2} \\ p_{3} \end{pmatrix} + \frac{1}{s_{24}(\ell+p_{2})^{2}(\ell-p_{4})^{2}} n \begin{pmatrix} p_{3} \\ p_{1} \end{pmatrix} J \begin{pmatrix} p_{4} \\ p_{2} \end{pmatrix} = 0$$

[Tourkine, Vanhove (2016)]
[Ochirov, Tourkine, Vanhove (2017)]

- Satisfied automatically for 4-point one-loop amplitudes
- Off-shell decomposition eliminates redundant terms
- ☑ Interesting integral relations at one-loop level
- ☑ Straightforward application with Loop-Tree duality formalism

One-loop example

[Llanes, Rodrigo, W.J.T. (2017)]

$$\int \frac{d^{d}\ell}{(2\pi)^{d}} \frac{\stackrel{n}{(\mathcal{I})}}{D_{0}D_{1}D_{2}} = \int \frac{d^{d}\ell}{(2\pi)^{d}} \frac{1}{D_{0}D_{1}D_{2}} \left[\stackrel{-n}{(\mathcal{I})} \stackrel{-n}{(\mathcal$$

>> LTD's talks

From string theory

$$\int \frac{d^{d}\ell}{(2\pi)^{d}} \left[\frac{1}{\ell^{2}(\ell+p_{12})^{2}(\ell-p_{4})^{2}} n \begin{pmatrix} p_{2} \\ p_{1} \end{pmatrix} J \begin{pmatrix} p_{3} \\ p_{4} \end{pmatrix} - \frac{1}{\ell^{2}(\ell+p_{2})^{2}(\ell+p_{23})^{2}} n \begin{pmatrix} p_{4} \\ p_{1} \end{pmatrix} J \begin{pmatrix} p_{2} \\ p_{3} \end{pmatrix} + \frac{1}{\ell^{2}(\ell+p_{2})^{2}(\ell-p_{4})^{2}} n \begin{pmatrix} p_{3} \\ p_{1} \end{pmatrix} J \begin{pmatrix} p_{4} \\ p_{2} \end{pmatrix} + \frac{1}{s_{12}\ell^{2}(\ell+p_{12})^{2}} n \begin{pmatrix} p_{2} \\ p_{1} \end{pmatrix} J \begin{pmatrix} p_{3} \\ p_{4} \end{pmatrix} - \frac{1}{s_{23}(\ell+p_{1})^{2}(\ell-p_{4})^{2}} n \begin{pmatrix} p_{4} \\ p_{1} \end{pmatrix} J \begin{pmatrix} p_{2} \\ p_{3} \end{pmatrix} + \frac{1}{s_{24}(\ell+p_{2})^{2}(\ell-p_{4})^{2}} n \begin{pmatrix} p_{3} \\ p_{1} \end{pmatrix} J \begin{pmatrix} p_{4} \\ p_{2} \end{pmatrix} = 0$$

[Tourkine, Vanhove (2016)]
[Ochirov, Tourkine, Vanhove (2017)]

- Satisfied automatically for 4-point one-loop amplitudes
- ☑ Off-shell decomposition eliminates redundant terms
- ☑ Interesting integral relations at one-loop level
- Straightforward application with Loop-Tree duality formalism

[Mastrolia, Primo, Schubert, W.J.T. (2015)]

Four-dimensional formulation of FDH

[Fazio, Mastrolia, Mirabella, W.J.T. (2014)]

Consider the 4-point amplitude

and the Jacobi identity

[Mastrolia, Primo, Schubert, W.J.T. (2015)]

Four-dimensional formulation of FDH

[Fazio, Mastrolia, Mirabella, W.J.T. (2014)]

Consider the 4-point amplitude

Solving for c_2

$$\mathcal{A}_4(p_1, p_2, p_3, p_4) = c_1 K_1 + c_3 K_3$$

being

$$K_1 = \frac{n_1}{P_{23}^2 - \mu^2} + \frac{n_2}{P_{12}^2},$$

$$K_3 = \frac{n_3}{P_{24}^2 - \mu^2} - \frac{n_2}{P_{12}^2}.$$

Colour-ordered amplitudes

$$K_1 = A(1, 2, 3, 4)$$

$$K_3 = A(2,1,3,4)$$

and the Jacobi identity

Kinematic numerators obey Jacobi identity

$$-n_1 + n_2 + n_3 = 0.$$

[Mastrolia, Primo, Schubert, W.J.T. (2015)]

Four-dimensional formulation of FDH

[Fazio, Mastrolia, Mirabella, W.J.T. (2014)]

Consider the 4-point amplitude

$$-c_1 + c_2 + c_3 = 0$$

Solving for c_2

$$\mathcal{A}_4(p_1, p_2, p_3, p_4) = c_1 K_1 + c_3 K_3$$

being

$$K_1 = \frac{n_1}{P_{23}^2 - \mu^2} + \frac{n_2}{P_{12}^2},$$

$$K_3 = \frac{n_3}{P_{24}^2 - \mu^2} - \frac{n_2}{P_{12}^2}$$

and the Jacobi identity

Kinematic numerators obey Jacobi identity

$$-n_1 + n_2 + n_3 = 0.$$

Colour-ordered amplitudes

$$K_1 = A(1, 2, 3, 4)$$

$$K_3 = A(2,1,3,4)$$

$$\begin{pmatrix} \frac{1}{P_{23}^{2}-\mu^{2}} & \frac{1}{P_{12}^{2}} & 0\\ 0 & -\frac{1}{P_{12}^{2}} & \frac{1}{P_{24}^{2}-\mu^{2}}\\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} n_{1}\\ n_{2}\\ n_{3} \end{pmatrix} = \begin{pmatrix} K_{1}\\ K_{3}\\ 0 \end{pmatrix}$$

[Mastrolia, Primo, Schubert, W.J.T. (2015)]

Four-dimensional formulation of FDH

[Fazio, Mastrolia, Mirabella, W.J.T. (2014)]

Consider the 4-point amplitude

Solving for c_2

$$\mathcal{A}_4(p_1, p_2, p_3, p_4) = c_1 K_1 + c_3 K_3$$

being

$$K_1 = \frac{n_1}{P_{23}^2 - \mu^2} + \frac{n_2}{P_{12}^2},$$

$$K_3 = \frac{n_3}{P_{24}^2 - \mu^2} - \frac{n_2}{P_{12}^2}$$

and the Jacobi identity

Kinematic numerators obey Jacobi identity

$$-n_1 + n_2 + n_3 = 0.$$

Colour-ordered amplitudes

$$K_1 = A(1, 2, 3, 4)$$

$$K_3 = A(2,1,3,4)$$

$$\begin{pmatrix} \frac{1}{P_{23}^{2}-\mu^{2}} & \frac{1}{P_{12}^{2}} & 0\\ 0 & -\frac{1}{P_{12}^{2}} & \frac{1}{P_{24}^{2}-\mu^{2}}\\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} n_{1}\\ n_{2}\\ n_{3} \end{pmatrix} = \begin{pmatrix} K_{1}\\ K_{3}\\ 0 \end{pmatrix}$$

4-pt C/K-relations

$$A(2,1,3,4) = \frac{P_{23}^2 - \mu^2}{P_{24}^2 - \mu^2} A(1,2,3,4).$$

William J. Torres Bobadilla

Four-dimensional formulation of FDH

[Fazio, Mastrolia, Mirabella, W.J.T. (2014)]

[Mastrolia, Primo, Schubert, W.J.T. (2015)]

As well, for the 5-point

$$A_{5}(1,3,4,2,5) = \frac{-P_{12}^{2}P_{45}^{2}A_{5}(1,2,3,4,5) + (P_{14}^{2} - \mu^{2})(P_{24}^{2} + P_{25}^{2} - 2\mu^{2})A_{5}(1,4,3,2,5)}{(P_{13}^{2} - \mu^{2})(P_{24}^{2} - \mu^{2})},$$

$$A_{5}(1,2,4,3,5) = \frac{-(P_{14}^{2} - \mu^{2})(P_{25}^{2} - \mu^{2})A_{5}(1,4,3,2,5) + P_{45}^{2}(P_{12}^{2} + P_{24}^{2} - \mu^{2})A_{5}(1,2,3,4,5)}{P_{35}^{2}(P_{24}^{2} - \mu^{2})},$$

$$A_{5}(1,4,2,3,5) = \frac{-P_{12}^{2}P_{45}^{2}A_{5}(1,2,3,4,5) + (P_{25}^{2} - \mu^{2})(P_{14}^{2} + P_{25}^{2} - 2\mu^{2})A_{5}(1,4,3,2,5)}{P_{35}^{2}(P_{24}^{2} - \mu^{2})},$$

$$A_{5}(1,3,2,4,5) = \frac{-(P_{14}^{2} - \mu^{2})(P_{25}^{2} - \mu^{2})A_{5}(1,4,3,2,5) + P_{12}^{2}(P_{24}^{2} + P_{45}^{2} - \mu^{2})A_{5}(1,2,3,4,5)}{(P_{13}^{2} - \mu^{2})(P_{24}^{2} - \mu^{2})}.$$

Making use of the photon decoupling identity

$$A_5(1,2,4,3,5) = \frac{(P_{14}^2 + P_{45}^2 - \mu^2)A_5(1,2,3,4,5) + (P_{14}^2 - \mu^2)A_5(1,2,3,5,4)}{(P_{24}^2 - \mu^2)}$$

BCJ relations @ 1-loop

[Primo, W.J.T. (2016)]

Inspired by the generalised unitarity

$$C_{12|3...k|(k+1)...l|(l+1)...n}^{\pm} = A_4^{\text{tree}} \left(-l_1^{\pm}, 1, 2, l_3^{\pm} \right) A_k^{\text{tree}} \left(-l_3^{\pm}, P_{3...k}, l_{k+1}^{\pm} \right)$$

$$\times A_{l-k+2}^{\text{tree}} \left(-l_{k+1}^{\pm}, P_{k+1...,l}, l_{l+1}^{\pm} \right) A_{n-l+2}^{\text{tree}} \left(-l_{l+1}^{\pm}, P_{l+1...,n}, l_1^{\pm} \right)$$

$$C^{\pm}_{21|3...k|(k+1)...l|(l+1)...n} = \frac{P^2_{l_3^{\pm}2} - \mu^2}{P^2_{-l_1^{\pm}2} - \mu^2} C^{\pm}_{12|3...k|(k+1)...l|(l+1)...n}.$$

BCJ relations @ 1-loop

[Primo, W.J.T. (2016)]

Inspired by the generalised unitarity

$$C_{12|3...k|(k+1)...l|(l+1)...n}^{\pm} = A_4^{\text{tree}} \left(-l_1^{\pm}, 1, 2, l_3^{\pm} \right) A_k^{\text{tree}} \left(-l_3^{\pm}, P_{3...k}, l_{k+1}^{\pm} \right) \\ \times A_{l-k+2}^{\text{tree}} \left(-l_{k+1}^{\pm}, P_{k+1...,l}, l_{l+1}^{\pm} \right) A_{n-l+2}^{\text{tree}} \left(-l_{l+1}^{\pm}, P_{l+1...,n}, l_1^{\pm} \right)$$

$$C^{\pm}_{21|3...k|(k+1)...l|(l+1)...l} = \frac{P^2_{l_3^{\pm}2} - \mu^2}{P^2_{-l_1^{\pm}2} - \mu^2} C^{\pm}_{12|3...k|(k+1)...l|(l+1)...n}.$$

C/K relation

$$A(2,1,3,4) = \frac{P_{23}^2 - \mu^2}{P_{24}^2 - \mu^2} A(1,2,3,4).$$

One-loop amplitudes in N=4 sYM

[Bjerrum-Bohr, Damgaard, Sondergaard, Vanhove (2010)]

Cut constructible part of One-loop QCD amplitudes

[Chester (2016)]

One-loop QCD amplitudes

[Primo, W.J.T. (2016)]

One-loop scattering amplitudes

Deal with with integrals of the form

$$\bar{l}^2,\,\bar{l}\cdot p_i,\,\bar{l}\cdot arepsilon_i$$

$$I_{i_1 \cdots i_k} \left[\mathcal{N}(\bar{l}, p_i) \right] = \int d^d \bar{l} \frac{\mathcal{N}_{i_1 \cdots i_k}(\bar{l}, p_i)}{D_{i_1} \cdots D_{i_k}}$$

Numerator and denominators are polynomials in the integration variable

Tensor reduction

$$A_n^{(1),D=4}(\{p_i\}) = \sum_{K_4} C_{4;K4}^{[0]} + \sum_{K_3} C_{3;K3}^{[0]} + \sum_{K_2} C_{2;K2}^{[0]} - + \sum_{K_1} C_{1;K1}^{[0]}$$

[Passarino - Veltman (1979)]

- Cut-constructible amplitude -> determined by its branch cuts
- ☑ All one-loop amplitudes are cut-constructible in dimensional regularisation.
- Master integrals are known

One-loop scattering amplitudes

Deal with with integrals of the form

$$\bar{l}^2, \, \bar{l} \cdot p_i, \, \bar{l} \cdot \varepsilon_i$$

$$I_{i_1 \cdots i_k} \left[\mathcal{N}(\bar{l}, p_i) \right] = \int d^d \bar{l} \frac{\mathcal{N}_{i_1 \cdots i_k}(\bar{l}, p_i)}{D_{i_1} \cdots D_{i_k}}$$

Numerator and denominators are polynomials in the integration variable

Tensor reduction

[Passarino - Veltman (1979)]

Unitarity based methods

$$= c_4 + c_3 + c_2 + c_3$$

$$= c_4 + c_3 + c_3$$

$$= c_4 + c_3$$

$$\frac{i}{q_i^2 - m^2 - i\epsilon} \to 2\pi \,\delta^{(+)} \left(q_i^2 - m_i^2 \right)$$

cut-4 :: Britto Cachazo Feng

Isolate the leading discontinuity!

cut-3 :: Forde

Bjerrum-Bohr, Dunbar, Ita, Perkins

Mastrolia

cut-2:: Bern, Dixon, Dunbar, Kosower. Britto, Buchbinder, Cachazo, Feng. Britto, Feng, Mastrolia.

BCJ relations @ 1-loop

[Primo, W.J.T. (2016)]

Same behaviour for lower topologies

$$\begin{split} C^{\pm}_{123|4...k|(k+1)...n} \\ &= A^{\text{tree}}_{5} \left(-l_{1}^{\pm}, 1, 2, 3, l_{4}^{\pm} \right) A^{\text{tree}}_{k-1} \left(-l_{4}^{\pm}, P_{4...k}, l_{k+1}^{\pm} \right) A^{\text{tree}}_{n-k+2} \left(-l_{k+1}^{\pm}, P_{k+1...,n}, l_{1}^{\pm} \right) \end{split}$$

$$C_{213|4...k|(k+1)...n}^{\pm} = \frac{\left(P_{l_{4}^{\pm}2}^{2} + P_{23}^{2} - \mu^{2}\right)C_{123|4...k|(k+1)...n}^{\pm} + \left(P_{l_{4}^{\pm}2}^{2} - \mu^{2}\right)C_{132|4...k|(k+1)...n}^{\pm}}{\left(P_{-l_{1}^{\pm}2}^{2} - \mu^{2}\right)}$$

due to

$$A_5(1,2,4,3,5) = \frac{(P_{14}^2 + P_{45}^2 - \mu^2)A_5(1,2,3,4,5) + (P_{14}^2 - \mu^2)A_5(1,2,3,5,4)}{(P_{24}^2 - \mu^2)}$$

[Primo, W.J.T. (2016)]

Target :: Reduce the number of independent residues needed to compute any colour-dressed one-loop amplitude

$$\frac{A_{n}^{1-\text{loop}} = \int d^{d}\bar{l} \frac{\mathcal{N}(l,\mu^{2})}{D_{0}D_{1}\dots D_{n-1}}}{D_{0}D_{1}\dots D_{n-1}} = \sum_{i\ll m}^{n-1} \frac{\Delta_{ijklm}(l,\mu^{2})}{D_{i}D_{j}D_{k}D_{l}D_{m}} + \sum_{i\ll l}^{n-1} \frac{\Delta_{ijkl}(l,\mu^{2})}{D_{i}D_{j}D_{k}D_{l}} + \sum_{i\ll k}^{n-1} \frac{\Delta_{ijk}(l,\mu^{2})}{D_{i}D_{j}D_{k}}$$

$$D_{i} = (\bar{l} + p_{i})^{2} - m_{i}^{2} = (l + p_{i})^{2} - m_{i}^{2} - \mu^{2}.$$

$$+ \sum_{i < j}^{n-1} \frac{\Delta_{ij}(l,\mu^{2})}{D_{i}D_{j}} + \sum_{i}^{n-1} \frac{\Delta_{i}(l,\mu^{2})}{D_{i}},$$

[Primo, W.J.T. (2016)]

Target :: Reduce the number of independent residues needed to compute any colour-dressed one-loop amplitude

$$A_{n}^{1-\text{loop}} = \int d^{d}\bar{l} \frac{\mathcal{N}(l, \mu^{2})}{D_{0}D_{1} \dots D_{n-1}},$$

$$\frac{N(l, \mu^{2})}{D_{0}D_{1} \dots D_{n-1}} = \sum_{i \ll m}^{n-1} \underbrace{\Delta_{ijklm}(l, \mu^{2})}_{D_{i}D_{j}D_{k}D_{l}D_{m}} + \sum_{i \ll l}^{n-1} \underbrace{\Delta_{ijkl}(l, \mu^{2})}_{D_{i}D_{j}D_{k}D_{l}} + \sum_{i \ll l}^{n-1} \underbrace{\Delta_{ijkl}(l, \mu^{2})}_{D_{i}D_{j}D_{k}} + \sum_{i \ll l}^{n-1} \underbrace{\Delta_{ij}(l, \mu^{2})}_{D_{i}D_{j}D_{k}} + \sum_{i \ll l}^{n-1} \underbrace{\Delta_{ij}(l, \mu^{2})}_{D_{i}D_{j}} + \sum$$

Ingredients :: Residues @cut -> Keep under control their polynomial structure

$$\begin{split} &\Delta_{ijklm} = c\mu^2, \\ &\Delta_{ijkl} = c_0 + c_1x_4 + c_2\mu^2 + c_3x_4\mu^2 + c_4\mu^4, \\ &\Delta_{ijk} = c_{0,0} + c_{1,0}^+ x_4 + c_{2,0}^+ x_4^2 + c_{1,0}^+ x_3^2 + c_{1,0}^- x_3 + c_{2,0}^- x_3^2 + c_{3,0}^- x_3^3 + c_{0,2}\mu^2 + c_{1,2}^+ x_4\mu^2 + c_{1,2}^- x_3\mu^2, \\ &\Delta_{ij} = c_{0,0,0} + c_{0,1,0}x_1 + c_{0,2,0}x_1^2 + c_{1,0,0}^+ x_4 + c_{2,0,0}^+ x_4^2 + c_{1,0,0}^- x_3 + c_{2,0,0}^- x_3^2 + c_{1,1,0}^+ x_1 x_4 \\ &\quad + c_{1,1,0}^- x_1 x_3 + c_{0,0,2}\mu^2, \\ &\Delta_{i} = c_{0,0,0,0} + c_{0,1,0,0}x_1 + c_{0,0,1,0}x_2 + c_{1,0,0,0}^- x_3 + c_{1,0,0,0}^+ x_4, \end{split}$$

[Primo, W.J.T. (2016)]

Target :: Reduce the number of independent residues needed to compute any colour-dressed one-loop amplitude

$$A_{n}^{1-\text{loop}} = \int d^{d}\bar{l} \frac{\mathcal{N}(l, \mu^{2})}{D_{0}D_{1} \dots D_{n-1}},$$

$$\frac{N(l, \mu^{2})}{D_{0}D_{1} \dots D_{n-1}} = \sum_{i \ll m}^{n-1} \frac{\Delta_{ijklm}(l, \mu^{2})}{D_{i}D_{j}D_{k}D_{l}D_{m}} + \sum_{i \ll l}^{n-1} \frac{\Delta_{ijkl}(l, \mu^{2})}{D_{i}D_{j}D_{k}D_{l}} + \sum_{i \ll l}^{n-1} \frac{\Delta_{ijkl}(l, \mu^{2})}{D_{i}D_{j}D_{k}}$$

$$+ \sum_{i < j}^{n-1} \frac{\Delta_{ij}(l, \mu^{2})}{D_{i}D_{j}} + \sum_{i}^{n-1} \frac{\Delta_{i}(l, \mu^{2})}{D_{i}},$$

Ingredients :: Residues @cut —> Keep under control their polynomial structure

$$\begin{split} &\Delta_{ijklm} = c\mu^2, \\ &\Delta_{ijkl} = c_0 + c_1x_4 + c_2\mu^2 + c_3x_4\mu^2 + c_4\mu^4, \\ &\Delta_{ijk} = c_{0,0} + c_{1,0}^+ x_4 + c_{2,0}^+ x_4^2 + c_{3,0}^+ x_4^3 + c_{1,0}^- x_3 + c_{2,0}^- x_3^2 + c_{3,0}^- x_3^3 + c_{0,2}\mu^2 + c_{1,2}^+ x_4\mu^2 + c_{1,2}^- x_3\mu^2, \\ &\Delta_{ij} = c_{0,0,0} + c_{0,1,0}x_1 + c_{0,2,0}x_1^2 + c_{1,0,0}^+ x_4 + c_{2,0,0}^+ x_4^2 + c_{1,0,0}^- x_3 + c_{2,0,0}^- x_3^2 + c_{1,1,0}^+ x_1 x_4 \\ &\quad + c_{1,1,0}^- x_1 x_3 + c_{0,0,2}\mu^2, \\ &\Delta_{i} = c_{0,0,0,0} + c_{0,1,0,0}x_1 + c_{0,0,1,0}x_2 + c_{1,0,0,0}^- x_3 + c_{1,0,0,0}^+ x_4, \end{split}$$

Procedure :: C/K-relations @work —> Generate a system of equations that relates

residues of different ordering through C/K-relations

$$= \frac{P_{l_{3}^{\pm}2}^{2} - \mu^{2}}{P_{-l_{1}^{\pm}2}^{2} - \mu^{2}}$$

[Primo, W.J.T. (2016)]

Target :: Reduce the number of independent residues needed to compute any colour-dressed one-loop amplitude

$$A_{n}^{1-\text{loop}} = \int d^{d}\bar{l} \frac{\mathcal{N}(l, \mu^{2})}{D_{0}D_{1} \dots D_{n-1}},$$

$$\frac{N(l, \mu^{2})}{D_{0}D_{1} \dots D_{n-1}} = \sum_{i \ll m}^{n-1} \frac{\Delta_{ijklm}(l, \mu^{2})}{D_{i}D_{j}D_{k}D_{l}D_{m}} + \sum_{i \ll l}^{n-1} \frac{\Delta_{ijkl}(l, \mu^{2})}{D_{i}D_{j}D_{k}D_{l}} + \sum_{i \ll l}^{n-1} \frac{\Delta_{ijkl}(l, \mu^{2})}{D_{i}D_{j}D_{k}}$$

$$+ \sum_{i < j}^{n-1} \frac{\Delta_{ij}(l, \mu^{2})}{D_{i}D_{j}} + \sum_{i}^{n-1} \frac{\Delta_{i}(l, \mu^{2})}{D_{i}},$$

Ingredients :: Residues @cut —> Keep under control their polynomial structure

$$\begin{split} &\Delta_{ijklm} = c\mu^2, \\ &\Delta_{ijkl} = c_0 + c_1x_4 + c_2\mu^2 + c_3x_4\mu^2 + c_4\mu^4, \\ &\Delta_{ijk} = c_{0,0} + c_{1,0}^+ x_4 + c_{2,0}^+ x_4^2 + c_{3,0}^+ x_4^3 + c_{1,0}^- x_3 + c_{2,0}^- x_3^2 + c_{3,0}^- x_3^3 + c_{0,2}\mu^2 + c_{1,2}^+ x_4\mu^2 + c_{1,2}^- x_3\mu^2, \\ &\Delta_{ij} = c_{0,0,0} + c_{0,1,0}x_1 + c_{0,2,0}x_1^2 + c_{1,0,0}^+ x_4 + c_{2,0,0}^+ x_4^2 + c_{1,0,0}^- x_3 + c_{2,0,0}^- x_3^2 + c_{1,1,0}^+ x_1 x_4 \\ &\quad + c_{1,1,0}^- x_1 x_3 + c_{0,0,2}\mu^2, \\ &\Delta_{i} = c_{0,0,0,0} + c_{0,1,0,0}x_1 + c_{0,0,1,0}x_2 + c_{1,0,0,0}^- x_3 + c_{1,0,0,0}^+ x_4, \end{split}$$

Procedure :: C/K-relations @work —> Generate a system of equations that relates residues of different ordering through C/K-relations

$$= \frac{P_{l_3^{\pm}2}^2 - \mu^2}{P_{-l_1^{\pm}2}^2 - \mu^2}$$

- The solution of the system gives us a reduce set of independent residues
- Unitarity @work —> Compute the independent residues through Unitarity Based Methods

$$\Delta^{(13...)} \equiv \sum_{l_i \in \mathcal{S}} A_4(-l_1, 1, 2, l_2) \times A(\ldots) \times \cdots \times A(\ldots),$$

Conclusions/Outlook

- Further simplifications from Colour-Kinematics duality
- ☑ Most compact representation of the Jacobi identity for kinematic numerators
- New integral and integrand relations at one-loop level
- ☑ Unitarity + C/K-duality @ work
- ☑ LTD + C/K-duality @ work
- Provide integral relations at multi-loop level
- More applications to come in the near future

Conclusions/Outlook

- Further simplifications from Colour-Kinematics duality
- ☑ Most compact representation of the Jacobi identity for kinematic numerators
- ☑ New integral and integrand relations at one-loop level
- ☑ Unitarity + C/K-duality @ work
- ☑ LTD + C/K-duality @ work
- Provide integral relations at multi-loop level
- More applications to come in the near future