5 OCHOA BỢVALĖNCIA

Off-shell Jacobi currents within the loop-tree duality

William J. Torres Bobadilla
Institut de Física Corpuscular
Universitat de València - CSIC

In collaboration with:
P. Mastrolia, A. Primo ,U. Schubert; J. Llanes, G. Rodrigo.

EPS-HEP 2019

11 July 2019
Ghent, Belgium

Outline

O Colour decomposition
O Colour-Kinematics duality

- C/K duality @ tree-level in d
- Integral relations @1L

O Conclusions/Outlook

Amplitudes?

What are they?

Where do they appear?

Amplitudes?

What are they?

Where do they appear?

Electromagnetism
Electric and magnetic field

Optics
Intensity of light (wave)

Quantum Mechanics

$\left\langle\psi_{\text {out }} \mid \psi_{\text {in }}\right\rangle$

Quantum Field theory

$$
\left\langle\psi_{\text {out }}\right| S\left|\psi_{\text {in }}\right\rangle
$$

Amplitudes?

What are they?

Where do they appear?

Electromagnetism
Electric and magnetic field
Optics
Intensity of light (wave)

Quantemifield theory
Quantum Mechanics

$$
\left\langle\psi_{\text {out }} \mid \psi_{\text {in }}\right\rangle
$$

Amplitudes?

What are they?

Where do they appear?

Electromagnetism

Electric and magnetic field

Optics

Intensity of light (wave)

Quantain rield theory

Quantum Mechanics

$$
\left\langle\psi_{\text {out }} \mid \psi_{\text {in }}\right\rangle
$$

Scattering Amplitudes

* Particle interactions

$$
1+2 \rightarrow 3+4
$$

2->2 scattering

* Quantum probability ~

The simplest process

* Amplitudes ~ Feynman diagrams

Perturbation expansion

Scattering Amplitudes

* Particle interactions

$$
1+2 \rightarrow 3+4
$$

2->2 scattering

* Quantum probability ~

The simplest process

* Amplitudes ~ Feynman diagrams

Perturbation expansion

Scattering Amplitudes

* Particle interactions

* A

Tree-level

William J. Torres Bobadilla

Dyson series

The simplest process

two-loop

Colour decomposition

In QCD any amplitude can be decomposed as

At tree-level

For the \mathbf{n}-gluon tree-level amplitude, the colour decomposition is

$$
\mathcal{A}_{\mathrm{n}}^{\text {tree }}\left(\left\{k_{i}, a_{i}, h_{i}\right\}\right)=g^{n-2} \operatorname{Tr}\left(T^{a_{1}} T^{a_{2}} \cdots T^{a_{n}}\right) A_{\mathrm{n}}^{\text {tree }}\left(1^{h_{1}}, 2^{h_{2}}, \ldots, n^{h_{n}}\right)+\text { all non-cyclic permutations }
$$

Properties between amplitudes
Reflection invariance $\longrightarrow(\mathbf{n}-\mathbf{1})$! Independent amplitudes
Cyclic invariance

$$
\mathcal{A}_{n}^{\text {tree }}\left(\left\{p_{i}, h_{i}, a_{i}\right\}\right)=g^{n-2} \sum_{\sigma \in S_{n} / Z_{n}} \operatorname{Tr}\left(T^{a_{\sigma(1)}} \ldots T^{a_{\sigma(n)}}\right) A_{n}^{\text {tree }}\left(\sigma\left(1^{h_{1}}\right), \ldots, \sigma\left(n^{h_{n}}\right)\right)
$$

Colour decomposition

In QCD any amplitude can be decomposed as

At tree-level

An alternative representation
[Del Duca, Frizzo and Maltoni (1999)] [Del Duca, Dixon and Maltoni (1999)]
$\mathcal{A}_{n}^{\text {tree }}\left(\left\{p_{i}, h_{i}, a_{i}\right\}\right)=(i g)^{n-2} f^{a_{1} a_{2} x_{1}} f^{x_{1} a_{3} x_{2}} \ldots f^{x_{n-3} a_{n-1} a_{b}} A_{n}^{\text {tree }}\left(1^{h_{1}}, \sigma\left(2^{h_{2}}\right), \ldots, n^{h}\right)+$ all non-cyclic permutations

Properties between amplitudes
Q. Kleiss-Kuijf relations $A_{n}^{\text {tree }}\left(1, \alpha_{1}, \ldots, \alpha_{j}, n, \beta_{1}, \ldots, \beta_{n-2-j}\right)=(-1)^{n-2-j} \sum_{\sigma \in \vec{\alpha} 山 \vec{\beta}^{\text {T }}} A_{n}^{\text {tree }}\left(1, \sigma_{1}, \ldots, \sigma_{n-2-j}, n\right)$

$$
\mathcal{A}_{n}^{\text {tree }}\left(\left\{p_{i}, h_{i}, a_{i}\right\}\right)=(i g)^{n-2} \sum_{\sigma \in S_{n-2}} f^{a_{1} a_{2} x_{1}} f^{x_{1} a_{3} x_{2}} \cdots f^{x_{n-3} a_{\sigma_{n-1}} a_{b}} A_{n}^{\text {tree }}\left(1^{h_{1}}, \sigma\left(2^{h_{2}}\right), \ldots, n^{h}\right)
$$

Colour-Kinematics duality

Jacobi Relation (colour)

$\left.{ }_{1}^{2}\right\rangle_{c_{s}}<_{4}^{3}=\frac{2}{1 \square_{c_{t}}} 4-3-{ }_{1}^{2} \underbrace{3}_{c_{u}} 4$	$\begin{aligned} c_{s} & =c_{t}-c_{u} \\ f^{a_{1} a_{2} b} f^{a_{3} a_{4} b} & =f^{a_{4} a_{1} b} f^{a_{2} a_{3} b}-f^{a_{1} a_{3} b} f^{a_{2} a_{4} b} \\ f^{a_{1} a_{2} b} T^{b} & =T^{a_{1}} T^{a_{2}}-T^{a_{2}} T^{a_{1}} \end{aligned}$

Write QCD amplitudes in terms of cubic graphs

$$
\mathcal{A}_{n}=g^{n-2} \sum \frac{n_{i} c_{i}}{D_{i}}
$$

$$
\mathcal{A}_{4}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=c_{1} \frac{n_{1}}{P_{23}^{2}-\mu^{2}}+c_{2} \frac{n_{2}}{P_{12}^{2}}+c_{3} \frac{n_{3}}{P_{24}^{2}-\mu^{2}}
$$

Satisfy automatically for 4-point tree amplitudes $n_{s}=n_{t}-n_{u}$
For higher multiplicity, is not trivially satisfied
[Bern, Carrasco, Johansson (2008),(2010)]
[Bern, Dennen, Huang, Kiermaier (2010)], [Boels, Isermann (2012)]
Bern-Carrasco-Johansson relations
[Mastrolia, Primo, Schubert, W.J.T. (2015)]

$$
\sum_{i=3}^{n}\left(\sum_{j=3}^{i} s_{2 j}\right) A_{n}^{\text {tree }}(1,3, \ldots, i, 2, i+1, \ldots, n)=0 \longleftrightarrow(\mathbf{n}-\mathbf{3})!\text { Independent amplitudes }
$$

Colour-Kinematics duality

\square Relations between kinematic numerators
[Bern, Carrasco, Johansson (2008),(2010)]
[Johansson, Ochirov (2014),(2015)]
[de la Cruz, Kniss, Weinzierl (2015),(2016)]

- Provides symmetries among amplitudes

■ Strong Connection between gravity and Yang-Mills amplitudes

- Construction of gravity from knowledge of Yang-Mills amplitudes

Construct an off-shell current
[Llanes, Rodrigo, W.J.T. (2017)]

Colour-Kinematics duality

* At multi-loop level or higher-points

External particles become internal

$$
\begin{aligned}
u\left(p_{i}\right), v\left(p_{i}\right) & \rightarrow \not p_{i} \\
\varepsilon^{\mu_{i}}\left(p_{i} ; q_{i}\right) & \rightarrow \Pi^{\mu_{i} \nu_{i}}\left(p_{i} ; q_{i}\right)
\end{aligned}
$$

Propagator in axial gauge
\& Numerator built from the J -block is decomposed in terms of squared momenta

$$
\begin{array}{ll}
\left(N_{\mathrm{g}}^{\text {loop }}\right)_{\alpha_{1} \ldots \alpha_{4}}=J^{\mu_{1} . . \mu_{4}} \Pi_{\mu_{1} \alpha_{1}}\left(p_{1}, q_{1}\right) \Pi_{\mu_{2} \alpha_{2}}\left(p_{2}, q_{2}\right) \Pi_{\mu_{3} \alpha_{3}}\left(p_{3}, q_{3}\right) \Pi_{\mu_{4} \alpha_{4}}\left(p_{4}, q_{4}\right), \\
\left(N_{\mathrm{g}}^{\text {loop }}\right)_{\alpha_{1} \ldots \alpha_{4}}=\sum_{i=1}^{4} p_{i}^{2}\left(A_{g}^{i}\right)_{\alpha_{1} \ldots \alpha_{4}}+\sum_{\substack{i, j=1 \\
i \neq j}}^{4} p_{i}^{2} p_{j}^{2}\left(C_{g}^{i j}\right)_{\alpha_{1} \ldots \alpha_{4} .} & C_{g}=A_{g}\left(\left\{p_{i}\right\}\right)
\end{array}
$$

Colour-Kinematics duality

* At multi-loop level or higher-points

External particles become internal

$$
\begin{aligned}
u\left(p_{i}\right), v\left(p_{i}\right) & \rightarrow \not p_{i} \\
\varepsilon^{\mu_{i}}\left(p_{i} ; q_{i}\right) & \rightarrow \Pi^{\mu_{i} \nu_{i}}\left(p_{i} ; q_{i}\right)
\end{aligned}
$$

Propagator in axial gauge
§ Numerator built from the J -block is decomposed in terms of squared momenta

* Any loop diagram built from the J-block can be written as the sum of diagrams with one or two propagators less.

Colour-Kinematics duality

* At multi-loop level or higher-points

External particles become internal

$$
\begin{aligned}
u\left(p_{i}\right), v\left(p_{i}\right) & \rightarrow \not p_{i} \\
\varepsilon^{\mu_{i}}\left(p_{i} ; q_{i}\right) & \rightarrow \Pi^{\mu_{i} \nu_{i}}\left(p_{i} ; q_{i}\right)
\end{aligned}
$$

Propagator in axial gauge
§ Numerator built from the J -block is decomposed in terms of squared momenta

* Any loop diagram built from the J-block can be written as the sum of diagrams with one or two propagators less.

* By imposing on-shellness of the four particles

Colour-Kinematics duality

Decompose off- into on-shell momenta
Extract full dependence on the off-shell momenta

$$
p_{i}^{\alpha}=r_{i}^{\alpha}+\frac{p_{i}^{2}}{2 q \cdot r_{i}} q^{\alpha} \longrightarrow \sum_{\lambda=1}^{\sum_{\lambda\left(d_{s}\right)}^{d_{s}-2}\left(p_{i}\right) \varepsilon_{\lambda\left(d_{s}\right)}^{* \beta}\left(p_{i}\right)=\sum_{\lambda_{i}=1}^{d_{s}-2} \varepsilon_{i}^{\alpha} \varepsilon_{i}^{* \beta}+\frac{p_{i}^{2}}{\left(r_{i} \cdot q\right)^{2}} q^{\alpha} q^{\beta},} \begin{aligned}
& \sum_{\lambda=1}^{\left(d_{s}-2\right) / 2} \\
& u_{\lambda\left(d_{s}\right)}\left(p_{i}\right) \bar{u}_{\lambda\left(d_{s}\right)}\left(p_{i}\right)=\sum_{\lambda_{i}=1}^{2^{\left(d_{s}-2\right) / 2}} u_{i} \bar{u}_{i}+\frac{p_{i}^{2}}{2\left(r_{i} \cdot q\right)} q .
\end{aligned}
$$

Completeness relations
Construct multi-loop numerator

$$
N_{\mathrm{g}}=N_{\mathrm{g} \mu_{1} \ldots \mu_{4}} X^{\mu_{1} \ldots \mu_{4}}, \quad N_{\mathrm{g} \mu_{1} \ldots \mu_{4}}=J_{\mathrm{g}}^{\nu_{1} \ldots \nu_{4}} \Pi_{\mu_{1} \nu_{1}}\left(p_{1}, q\right) \ldots \Pi_{\mu_{4} \nu_{4}}\left(p_{4}, q\right) .
$$

Residual kinematic dependence
Numerator is decomposed in product of squared momenta

$$
\begin{array}{r}
N_{\mathbf{g}}^{\nu_{1} \ldots \nu_{4}}=\frac{1}{2} \sum_{i, j, k, l=1}^{4} \epsilon_{i j k l} p_{i}^{2}\left(A_{i j k l} \mathcal{E}_{i j}^{\nu_{i j} \nu_{j}} \mathcal{E}_{k l}^{\nu_{k} \nu_{l}}+B_{i j k l} \mathcal{E}_{j k}^{\nu_{j} \nu_{k}} \mathcal{Q}_{l}^{\nu_{i} \nu_{l}}+C_{i j k l} p_{j}^{2} \mathfrak{q}^{\nu_{i} \nu_{j}} \mathcal{E}_{k l}^{\nu_{k l} \nu_{l}}\right), \\
\boldsymbol{A}, \boldsymbol{B} \text { and } \boldsymbol{C} \text { are completely independent of } p_{i}^{2}
\end{array}
$$

Colour-Kinematics duality

Decompose off- into on-shell momenta
Extract full dependence on the off-shell momenta

$$
p_{i}^{\alpha}=r_{i}^{\alpha}+\frac{p_{i}^{2}}{2 q \cdot r_{i}} q^{\alpha} \longrightarrow \sum_{\lambda=1}^{\sum_{\lambda\left(d_{s}\right)}^{d_{s}-2}\left(p_{i}\right) \varepsilon_{\lambda\left(d_{s}\right)}^{* \beta}\left(p_{i}\right)=\sum_{\lambda_{i}=1}^{d_{s}-2} \varepsilon_{i}^{\alpha} \varepsilon_{i}^{* \beta}+\frac{p_{i}^{2}}{\left(r_{i} \cdot q\right)^{2}} q^{\alpha} q^{\beta},} \begin{aligned}
& \sum_{\lambda=1}^{2^{\left(d_{s}-2\right) / 2}} u_{\lambda\left(d_{s}\right)}\left(p_{i}\right) \bar{u}_{\lambda\left(d_{s}\right)}\left(p_{i}\right)=\sum_{\lambda_{i}=1}^{2^{\left(d_{s}-2\right) / 2}} u_{i} \bar{u}_{i}+\frac{p_{i}^{2}}{2\left(r_{i} \cdot q\right)} q .
\end{aligned}
$$

Completeness relations
Construct multi-loop numerator

$$
N_{\mathrm{g}}=N_{\mathrm{g} \mu_{1} \ldots \mu_{4}} X^{\mu_{1} \ldots \mu_{4}}, \quad N_{\mathrm{g} \mu_{1} \ldots \mu_{4}}=J_{\mathrm{g}}^{\nu_{1} \ldots \nu_{4}} \Pi_{\mu_{1} \nu_{1}}\left(p_{1}, q\right) \ldots \Pi_{\mu_{4} \nu_{4}}\left(p_{4}, q\right) .
$$

Residual kinematic dependence
Numerator is decomposed in product of squared momenta

$$
\begin{array}{r}
N_{\mathbf{g}}^{\nu_{1} \ldots \nu_{4}}=\frac{1}{2} \sum_{i, j, k, l=1}^{4} \epsilon_{i j k l} p_{i}^{2}\left(A_{i j k l} \mathcal{E}_{i j}^{\nu_{i j} \nu_{j}} \mathcal{E}_{k l}^{\nu_{k} \nu_{l}}+B_{i j k l} \mathcal{E}_{j k}^{\nu_{j} \nu_{k}} \mathcal{Q}_{l}^{\nu_{i} \nu_{l}}+C_{i j k l} p_{j}^{2} \mathfrak{q}^{\nu_{i} \nu_{j}} \mathcal{E}_{k l}^{\nu_{k l} \nu_{l}}\right), \\
\boldsymbol{A}, \boldsymbol{B} \text { and } \boldsymbol{C} \text { are completely independent of } p_{i}^{2}
\end{array}
$$

What about $p_{i}^{2} p_{j}^{2} p_{k}^{2}$ and $p_{i}^{2} p_{j}^{2} p_{k}^{2} p_{l}^{2}$ contributions?

Colour-Kinematics duality

Decompose off- into on-shell momenta
Extract full dependence on the off-shell momenta

$$
p_{i}^{\alpha}=r_{i}^{\alpha}+\frac{p_{i}^{2}}{2 q \cdot r_{i}} q^{\alpha} \longrightarrow \sum_{\lambda=1}^{\sum_{\lambda=1}^{d_{s}-2} \varepsilon_{\lambda\left(d_{s}\right)}^{\alpha}\left(p_{i}\right) \varepsilon_{\lambda\left(d_{s}\right)}^{* \beta}\left(p_{i}\right)=\sum_{\lambda_{i}=1}^{d_{s}-2} \varepsilon_{i}^{\alpha} \varepsilon_{i}^{* \beta}+\frac{p_{i}^{2}}{\left(r_{i} \cdot q\right)^{2}} q^{\alpha} q^{\beta},} \begin{array}{|}
\sum_{\lambda=1}^{\left(d_{s}-2\right) / 2} \\
u_{\lambda\left(d_{s}\right)}\left(p_{i}\right) \bar{u}_{\lambda\left(d_{s}\right)}\left(p_{i}\right)=\sum_{\lambda_{i}=1}^{2^{\left(d_{s}-2\right) / 2}} u_{i} \bar{u}_{i}+\frac{p_{i}^{2}}{2\left(r_{i} \cdot q\right)} q .
\end{array}
$$

Completeness relations
Construct multi-loop numerator

$$
\left.\left.N_{\mathrm{g}}=N_{\mathrm{g} \mu_{1} \ldots \mu_{4}} X^{\mu_{1} \ldots \mu_{4}}, \quad N_{\mathrm{g} \mu_{1} \ldots \mu_{4}}=J_{\mathrm{g}}^{\nu_{1} \ldots \nu_{4}} \Pi_{\mu_{1} \nu_{1}}\left(p_{1}, q\right)\right) \ldots \Pi_{\mu_{4} \nu_{4}}\left(p_{4}, q\right)\right) .
$$

> Residual kinematic dependence

Numerator is decomposed in product of squared momenta

Same reference momentum \boldsymbol{q} for all internal gluons!

$$
N_{\mathrm{g}}^{\nu_{1} \ldots \nu_{4}}=\frac{1}{2} \sum_{i, j, k, l=1}^{4} \epsilon_{i j k l} p_{i}^{2}\left(A_{i j k l} \mathcal{E}_{i j}^{\nu_{i} \nu_{j}} \mathcal{E}_{k l}^{\nu_{k} \nu_{l}}+B_{i j k l} \mathcal{E}_{j k}^{\nu_{j} \nu_{k}} \mathcal{Q}_{l}^{\nu_{i} \nu_{l}}+C_{i j k l} p_{j}^{2} \mathfrak{q}^{\nu_{i} \nu_{j}} \mathcal{E}_{k l}^{\nu_{k} \nu_{l}}\right),
$$

$$
\boldsymbol{A}, \boldsymbol{B} \text { and } \boldsymbol{C} \text { are completely independent of } p_{i}^{2}
$$

What about $p_{j}^{2}{ }^{2}{ }^{2}$ and $p_{i}^{2} p>p_{l}^{2}$ contributions?

Colour-Kinematics duality

One-loop example

From string theory
$\int \frac{d^{d} \ell}{(2 \pi)^{d}}[\frac{1}{\ell^{2}\left(\ell+p_{12}\right)^{2}\left(\ell-p_{4}\right)^{2}} n\left(\begin{array}{c}p_{2} \\ p_{1} \\ (J)\left[p_{p_{4}}^{p_{3}}\right.\end{array}\right)-\frac{1}{\ell^{2}\left(\ell+p_{2}\right)^{2}\left(\ell+p_{23}\right)^{2}} n(\overbrace{p_{1}}^{p_{4}}(J)]_{p_{3}}^{p_{2}})$

[Tourkine, Vanhove (2016)]
[Ochirov, Tourkine, Vanhove (2017)]

■ Satisfied automatically for 4-point one-loop amplitudes
\square Off-shell decomposition eliminates redundant terms
I Interesting integral relations at one-loop level
■ Straightforward application with Loop-Tree duality formalism

Colour-Kinematics duality

One-loop example

From string theory

$$
\begin{aligned}
& \int \frac{d^{d} \ell}{(2 \pi)^{d}}\left[\frac{1}{\ell^{2}\left(\ell+p_{12}\right)^{2}\left(\ell-p_{4}\right)^{2}} n\left(\begin{array}{c}
p_{2} \\
p_{1} \\
\\
(J)\left[p^{p_{4}}\right.
\end{array}\right)-\frac{1}{\ell^{2}\left(\ell+p_{2}\right)^{2}\left(\ell+p_{23}\right)^{2}} n\left(\begin{array}{l}
p_{4} \\
p_{1} \\
p^{2}
\end{array}\right]_{p_{3}}^{p_{2}}\right)
\end{aligned}
$$

[Tourkine, Vanhove (2016)]
[Ochirov, Tourkine, Vanhove (2017)]
\square Satisfied automatically for 4-point one-loop amplitudes
\square Off-shell decomposition eliminates redundant terms
\square Interesting integral relations at one-loop level
\square Straightforward application with Loop-Tree duality formalism

BCJ relations in DimReg

Four-dimensional formulation of FDH
[Fazio, Mastrolia, Mirabella, W.J.T. (2014)]
Consider the 4-point amplitude

and the Jacobi identity

BCJ relations in DimReg

Four-dimensional formulation of FDH
[Fazio, Mastrolia, Mirabella, W.J.T. (2014)]
Consider the 4-point amplitude

Solving for c_{2}

$$
\mathcal{A}_{4}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=c_{1} K_{1}+c_{3} K_{3}
$$

being

$$
\begin{gathered}
K_{1}=\frac{n_{1}}{P_{23}^{2}-\mu^{2}}+\frac{n_{2}}{P_{12}^{2}}, \quad K_{3}=\frac{n_{3}}{P_{24}^{2}-\mu^{2}}-\frac{n_{2}}{P_{12}^{2}} \\
\quad \text { Colour-ordered amplitudes } \\
K_{1}=A(1,2,3,4) \quad K_{3}=A(2,1,3,4)
\end{gathered}
$$

and the Jacobi identity
Kinematic numerators obey Jacobi identity

$$
-n_{1}+n_{2}+n_{3}=0
$$

BCJ relations in DimReg

Four-dimensional formulation of FDH

[Fazio, Mastrolia, Mirabella, W.J.T. (2014)]
Consider the 4-point amplitude

Solving for c_{2}

$$
\mathcal{A}_{4}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=c_{1} K_{1}+c_{3} K_{3}
$$

being
and the Jacobi identity Kinematic numerators obey Jacobi identity

$$
K_{1}=\frac{n_{1}}{P_{23}^{2}-\mu^{2}}+\frac{n_{2}}{P_{12}^{2}}, \quad K_{3}=\frac{n_{3}}{P_{24}^{2}-\mu^{2}}-\frac{n_{2}}{P_{12}^{2}}
$$

$$
-n_{1}+n_{2}+n_{3}=0
$$

Colour-ordered amplitudes

$$
K_{1}=A(1,2,3,4) \quad K_{3}=A(2,1,3,4)
$$

$$
\left(\begin{array}{ccc}
\frac{1}{P_{23}^{2}-\mu^{2}} & \frac{1}{P_{12}^{2}} & 0 \\
0 & -\frac{1}{P_{12}^{2}} & \frac{1}{P_{24}^{2}-\mu^{2}} \\
-1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
n_{1} \\
n_{2} \\
n_{3}
\end{array}\right)=\left(\begin{array}{c}
K_{1} \\
K_{3} \\
0
\end{array}\right)
$$

BCJ relations in DimReg

Four-dimensional formulation of FDH

[Fazio, Mastrolia, Mirabella, W.J.T. (2014)]
Consider the 4-point amplitude

Solving for c_{2}

$$
\mathcal{A}_{4}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=c_{1} K_{1}+c_{3} K_{3}
$$

being
and the Jacobi identity Kinematic numerators obey Jacobi identity

$$
K_{1}=\frac{n_{1}}{P_{23}^{2}-\mu^{2}}+\frac{n_{2}}{P_{12}^{2}}, \quad K_{3}=\frac{n_{3}}{P_{24}^{2}-\mu^{2}}-\frac{n_{2}}{P_{12}^{2}}
$$

$$
-n_{1}+n_{2}+n_{3}=0
$$

Colour-ordered amplitudes

$$
K_{1}=A(1,2,3,4) \quad K_{3}=A(2,1,3,4)
$$

$$
\left(\begin{array}{ccc}
\frac{1}{P_{23}^{2}-\mu^{2}} & \frac{1}{P_{12}^{2}} & 0 \\
0 & -\frac{1}{P_{12}^{2}} & \frac{1}{P_{24}^{2}-\mu^{2}} \\
-1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
n_{1} \\
n_{2} \\
n_{3}
\end{array}\right)=\left(\begin{array}{c}
K_{1} \\
K_{3} \\
0
\end{array}\right)
$$

4-pt C/K-relations

$$
A(2,1,3,4)=\frac{P_{23}^{2}-\mu^{2}}{P_{24}^{2}-\mu^{2}} A(1,2,3,4) .
$$

BCJ relations in DimReg

Four-dimensional formulation of FDH
[Mastrolia, Primo, Schubert, W.J.T. (2015)]
[Fazio, Mastrolia, Mirabella, W.J.T. (2014)]
As well, for the 5-point

$$
\begin{aligned}
& A_{5}(1,3,4,2,5)=\frac{-P_{12}^{2} P_{45}^{2} A_{5}(1,2,3,4,5)+\left(P_{14}^{2}-\mu^{2}\right)\left(P_{24}^{2}+P_{25}^{2}-2 \mu^{2}\right) A_{5}(1,4,3,2,5)}{\left(P_{13}^{2}-\mu^{2}\right)\left(P_{24}^{2}-\mu^{2}\right)}, \\
& A_{5}(1,2,4,3,5)=\frac{-\left(P_{14}^{2}-\mu^{2}\right)\left(P_{25}^{2}-\mu^{2}\right) A_{5}(1,4,3,2,5)+P_{45}^{2}\left(P_{12}^{2}+P_{24}^{2}-\mu^{2}\right) A_{5}(1,2,3,4,5)}{P_{35}^{2}\left(P_{24}^{2}-\mu^{2}\right)}, \\
& A_{5}(1,4,2,3,5)=\frac{-P_{12}^{2} P_{45}^{2} A_{5}(1,2,3,4,5)+\left(P_{25}^{2}-\mu^{2}\right)\left(P_{14}^{2}+P_{25}^{2}-2 \mu^{2}\right) A_{5}(1,4,3,2,5)}{P_{35}^{2}\left(P_{24}^{2}-\mu^{2}\right)}, \\
& A_{5}(1,3,2,4,5)=\frac{-\left(P_{14}^{2}-\mu^{2}\right)\left(P_{25}^{2}-\mu^{2}\right) A_{5}(1,4,3,2,5)+P_{12}^{2}\left(P_{24}^{2}+P_{45}^{2}-\mu^{2}\right) A_{5}(1,2,3,4,5)}{\left(P_{13}^{2}-\mu^{2}\right)\left(P_{24}^{2}-\mu^{2}\right)} .
\end{aligned}
$$

Making use of the photon decoupling identity

$$
A_{5}(1,2,4,3,5)=\frac{\left(P_{14}^{2}+P_{45}^{2}-\mu^{2}\right) A_{5}(1,2,3,4,5)+\left(P_{14}^{2}-\mu^{2}\right) A_{5}(1,2,3,5,4)}{\left(P_{24}^{2}-\mu^{2}\right)}
$$

BCJ relations @ 1-loop

Inspired by the generalised unitarity

$$
\begin{aligned}
C_{12|3 \ldots k|(k+1) \ldots l \mid(l+1) \ldots n}^{ \pm}= & A_{4}^{\text {tree }}\left(-l_{1}^{ \pm}, 1,2, l_{3}^{ \pm}\right) A_{k}^{\text {tree }}\left(-l_{3}^{ \pm}, P_{3 \ldots k}, l_{k+1}^{ \pm}\right) \\
& \times A_{l-k+2}^{\text {tree }}\left(-l_{k+1}^{ \pm}, P_{k+1 \ldots, l}, l_{l+1}^{ \pm}\right) A_{n-l+2}^{\text {tree }}\left(-l_{l+1}^{ \pm}, P_{l+1 \ldots, n}, l_{1}^{ \pm}\right)
\end{aligned}
$$

$$
C_{21|3 \ldots k|(k+1) \ldots l \mid(l+1) \ldots n}^{ \pm}=\frac{P_{l_{3}^{ \pm} 2}^{2}-\mu^{2}}{P_{-l_{1}^{ \pm} 2}^{2}-\mu^{2}} C_{12|3 \ldots k|(k+1) \ldots l \mid(l+1) \ldots n}^{ \pm}
$$

BCJ relations @ 1-loop

Inspired by the generalised unitarity

$$
\begin{aligned}
C_{12|3 \ldots k|(k+1) \ldots l \mid(l+1) \ldots n}^{ \pm}= & A_{4}^{\text {tree }}\left(-l_{1}^{ \pm}, 1,2, l_{3}^{ \pm}\right) A_{k}^{\text {tree }}\left(-l_{3}^{ \pm}, P_{3 \ldots k}, l_{k+1}^{ \pm}\right) \\
& \times A_{l-k+2}^{\text {tree }}\left(-l_{k+1}^{ \pm}, P_{k+1 \ldots, l}, l_{l+1}^{ \pm}\right) A_{n-l+2}^{\text {tree }}\left(-l_{l+1}^{ \pm}, P_{l+1 \ldots, n}, l_{1}^{ \pm}\right)
\end{aligned}
$$

$$
\left.C_{21|3 \ldots k|(k+1) \ldots l \mid(l+1) \ldots}^{ \pm}=\frac{P_{l_{3}^{ \pm} 2}^{2}-\mu^{2}}{P_{-l_{1}^{ \pm} 2}^{2}-\mu^{2}} C_{12}^{ \pm}|3 \ldots k|(k+1) \ldots l \right\rvert\,(l+1) \ldots n
$$

C / K relation

$$
A(2,1,3,4)=\frac{P_{23}^{2}-\mu^{2}}{P_{24}^{2}-\mu^{2}} A(1,2,3,4) .
$$

- One-loop amplitudes in $\mathrm{N}=4 \mathrm{sYM}$
[Bjerrum-Bohr, Damgaard, Sondergaard, Vanhove (2010)]
- Cut constructible part of One-loop QCD amplitudes
[Chester (2016)]
- One-loop QCD amplitudes

One-loop scattering amplitudes

Deal with with integrals of the form $\overline{l^{2}, \bar{l} \cdot p_{i}, \bar{l} \cdot \varepsilon_{i}}$

$$
I_{i_{1} \cdots i_{k}}\left[\mathcal{N}\left(\bar{l}, p_{i}\right)\right]=\int d^{d} \bar{l} \frac{\mathcal{N}_{i_{1} \cdots i_{k}}\left(\bar{l}, p_{i}\right)}{D_{i_{1}} \cdots D_{i_{k}}}
$$

Numerator and denominators are polynomials in the integration variable

Tensor reduction

$$
\left.A_{n}^{(1), D=A}\left(\left\{p_{i}\right\}\right)=\sum_{K_{4}} C_{4 ; K 4}^{(0)}\right]+\sum_{K_{3}} C_{C_{3 ; K 3}^{(0)}}^{[0]}, \sum_{K_{2}} C_{2 ; K 2}^{(0)}-\bigcirc+\sum_{K_{1}} C_{1 ; K 1}^{(0)}
$$

[Passarino - Veltman (1979)]
\square Cut-constructible amplitude -> determined by its branch cuts
I All one-loop amplitudes are cut-constructible in dimensional regularisation.
I Master integrals are known

One-loop scattering amplitudes

Deal with with integrals of the form $\overline{l^{2}, \bar{l} \cdot p_{i}, \bar{l} \cdot \varepsilon_{i}}$

$$
I_{i_{1} \cdots i_{k}}\left[\mathcal{N}\left(\bar{l}, p_{i}\right)\right]=\int d^{d} \bar{l} \frac{\mathcal{N}_{i_{1} \cdots i_{k}}\left(\bar{l}, p_{i}\right)}{D_{i_{1}} \cdots D_{i_{k}}}
$$

Numerator and denominators are polynomials in the integration variable

Tensor reduction

$$
A_{n}^{(1), D=4}\left(\left\{p_{i}\right\}\right)=\sum_{K_{4}} C_{4 ; K 4}^{[0]} \quad 0 \cdot \sum_{K_{3}} C_{3 ; K 3}^{[0]} \quad \sum_{K_{2}} C_{2 ; K 2}^{[0]}+\sum_{K_{1}} C_{1 ; K 1}^{[0]}
$$

Unitarity based methods

$$
\frac{i}{q_{i}^{2}-m^{2}-i \epsilon} \rightarrow 2 \pi \delta^{(+)}\left(q_{i}^{2}-m_{i}^{2}\right)
$$

cut-4 :: Britto Cachazo Feng
Isolate the leading discontinuity!
(
$Q=\pi$
cut-3 :: Forde
Bjerrum-Bohr, Dunbar, Ita, Perkins Mastrolia
cut-2 :: Bern, Dixon, Dunbar, Kosower.
Britto, Buchbinder, Cachazo, Feng.
Britto, Feng, Mastrolia.

BCJ relations @ 1-loop

Same behaviour for lower topologies

$$
\begin{aligned}
& C_{123|4 \ldots k|(k+1) \ldots n}^{ \pm} \\
& \quad=A_{5}^{\text {tree }}\left(-l_{1}^{ \pm}, 1,2,3, l_{4}^{ \pm}\right) A_{k-1}^{\text {tree }}\left(-l_{4}^{ \pm}, P_{4 \ldots k}, l_{k+1}^{ \pm}\right) A_{n-k+2}^{\text {tree }}\left(-l_{k+1}^{ \pm}, P_{k+1 \ldots, n}, l_{1}^{ \pm}\right)
\end{aligned}
$$

$$
C_{213|4 \ldots k|(k+1) \ldots n}^{ \pm}=\frac{\left(P_{l_{4}^{ \pm} 2}^{2}+P_{23}^{2}-\mu^{2}\right) C_{123|4 \ldots k|(k+1) \ldots n}^{ \pm}+\left(P_{l_{4}^{ \pm} 2}^{2}-\mu^{2}\right) C_{132|4 \ldots k|(k+1) \ldots n}^{ \pm}}{\left(P_{-l_{1}^{ \pm} 2}^{2}-\mu^{2}\right)}
$$

due to

$$
A_{5}(1,2,4,3,5)=\frac{\left(P_{14}^{2}+P_{45}^{2}-\mu^{2}\right) A_{5}(1,2,3,4,5)+\left(P_{14}^{2}-\mu^{2}\right) A_{5}(1,2,3,5,4)}{\left(P_{24}^{2}-\mu^{2}\right)}
$$

BCJ relations + Unitarity @ work

Target :: Reduce the number of independent residues needed to compute any colour-dressed one-loop amplitude

$$
\begin{aligned}
& A_{n}^{1-\text { loop }}=\int d^{d \bar{l}} \frac{\mathcal{N}\left(l, \mu^{2}\right)}{D_{0} D_{1} \ldots D_{n-1}}, \\
& \frac{N\left(l, \mu^{2}\right)}{D_{0} D_{1} \ldots D_{n-1}}=\sum_{i \ll m}^{n-1} \frac{\Delta_{i j k l m}\left(l, \mu^{2}\right)}{D_{i} D_{j} D_{k} D_{l} D_{m}}+\sum_{i \ll l}^{n-1} \frac{\Delta_{i j k l}\left(l, \mu^{2}\right)}{D_{i} D_{j} D_{k} D_{l}}+\sum_{i \ll k}^{n-1} \frac{\Delta_{i j k}\left(l, \mu^{2}\right)}{D_{i} D_{j} D_{k}} \\
& +\sum_{i<j}^{n-1} \frac{\Delta_{i j}\left(l, \mu^{2}\right)}{D_{i} D_{j}}+\sum_{i}^{n-1} \frac{\Delta_{i}\left(l, \mu^{2}\right)}{D_{i}},
\end{aligned}
$$

BCJ relations + Unitarity @ work

Target :: Reduce the number of independent residues needed to compute any colour-dressed one-loop amplitude

$$
\begin{array}{ll}
A_{n}^{1-\text { loop }}=\int d^{d} \bar{l} \frac{\mathcal{l}\left(l, \mu^{2}\right)}{D_{0} D_{1} \ldots D_{n-1}}, & \frac{N\left(l, \mu^{2}\right)}{D_{0} D_{1} \ldots D_{n-1}}= \\
\sum_{i \ll m}^{n-1} \frac{\Delta_{i j k l m}\left(l, \mu^{2}\right)}{D_{i} D_{j} D_{k} D_{l} D_{m}}+\sum_{i \ll l}^{n-1} \frac{\Delta_{i j k l}\left(l, \mu^{2}\right)}{D_{i} D_{j} D_{k} D_{l}}+\sum_{i \ll k}^{n-1} \frac{\Delta_{i j k}\left(l, \mu^{2}\right)}{D_{i} D_{j} D_{k}} \\
D_{i}=\left(\bar{l}+p_{i}\right)^{2}-m_{i}^{2}=\left(l+p_{i}\right)^{2}-m_{i}^{2}-\mu^{2} . & +\sum_{i<j}^{n-1} \frac{\Delta_{i j}\left(l, \mu^{2}\right)}{D_{i} D_{j}}+\sum_{i}^{n-1} \frac{\Delta_{i}\left(l, \mu^{2}\right)}{D_{i}},
\end{array}
$$

Ingredients :: Residues @cut —> Keep under control their polynomial structure

$$
\begin{aligned}
\Delta_{i j k l m}= & c \mu^{2}, \\
\Delta_{i j k l}= & c_{0}+c_{1} x_{4}+c_{2} \mu^{2}+c_{3} x_{4} \mu^{2}+c_{4} \mu^{4}, \\
\Delta_{i j k}= & c_{0,0}+c_{1,0}^{+} x_{4}+c_{2,0}^{+} x_{4}^{2}+c_{3,0}^{+} x_{4}^{3}+c_{1,0}^{-} x_{3}+c_{2,0}^{-} x_{3}^{2}+c_{3,0}^{-} x_{3}^{3}+c_{0,2} \mu^{2}+c_{1,2}^{+} x_{4} \mu^{2}+c_{1,2}^{-} x_{3} \mu^{2}, \\
\Delta_{i j}= & c_{0,0,0}+c_{0,1,0} x_{1}+c_{0,2,0} x_{1}^{2}+c_{1,0,0}^{+} x_{4}+c_{2,0,0}^{+} x_{4}^{2}+c_{1,0,0}^{-} x_{3}+c_{2,0,0}^{-} x_{3}^{2}+c_{1,1,0}^{+} x_{1} x_{4} \\
& +c_{1,1,0}^{-} x_{1} x_{3}+c_{0,0,2} \mu^{2}, \\
\Delta_{i}= & c_{0,0,0,0}+c_{0,1,0,0} x_{1}+c_{0,0,1,0} x_{2}+c_{1,0,0,0}^{-} x_{3}+c_{1,0,0,0}^{+} x_{4},
\end{aligned}
$$

BCJ relations + Unitarity @ work

Target :: Reduce the number of independent residues needed to compute any colour-dressed one-loop amplitude

$$
\begin{aligned}
& A_{n}^{1-\text { loop }}=\int d^{d} \bar{l} \frac{\mathcal{l}\left(l, \mu^{2}\right)}{D_{0} D_{1} \ldots D_{n-1}}, \frac{N\left(l, \mu^{2}\right)}{D_{0} D_{1} \ldots D_{n-1}}= \\
& \sum_{i \ll m}^{n-1} \frac{\Delta_{i j k l m}\left(l, \mu^{2}\right)}{D_{i} D_{j} D_{k} D_{l} D_{m}}+\sum_{i \ll l}^{n-1} \frac{\Delta_{i j k l}\left(l, \mu^{2}\right)}{D_{i} D_{j} D_{k} D_{l}}+\sum_{i \ll k}^{n-1} \frac{\Delta_{i j k}\left(l, \mu^{2}\right)}{D_{i} D_{j} D_{k}} \\
& D_{i}=\left(\bar{l}+p_{i}\right)^{2}-m_{i}^{2}=\left(l+p_{i}\right)^{2}-m_{i}^{2}-\mu^{2} .+\sum_{i<j}^{n-1} \frac{\Delta_{i j}\left(l, \mu^{2}\right)}{D_{i} D_{j}}+\sum_{i}^{n-1} \frac{\Delta_{i}\left(l, \mu^{2}\right)}{D_{i}},
\end{aligned}
$$

Ingredients :: Residues @cut —> Keep under control their polynomial structure

$$
\begin{aligned}
\Delta_{i j k l m}= & c \mu^{2}, \\
\Delta_{i j k l}= & c_{0}+c_{1} x_{4}+c_{2} \mu^{2}+c_{3} x_{4} \mu^{2}+c_{4} \mu^{4}, \\
\Delta_{i j k}= & c_{0,0}+c_{1,0}^{+} x_{4}+c_{2,0}^{+} x_{4}^{2}+c_{3,0}^{+} x_{4}^{3}+c_{1,0}^{-} x_{3}+c_{2,0}^{-} x_{3}^{2}+c_{3,0}^{-} x_{3}^{3}+c_{0,2} \mu^{2}+c_{1,2}^{+} x_{4} \mu^{2}+c_{1,2}^{-} x_{3} \mu^{2}, \\
\Delta_{i j}= & c_{0,0,0}+c_{0,1,0} x_{1}+c_{0,2,0} x_{1}^{2}+c_{1,0,0}^{+} x_{4}+c_{2,0,0}^{+} x_{4}^{2}+c_{1,0,0}^{-} x_{3}+c_{2,0,0}^{-} x_{3}^{2}+c_{1,1,0}^{+} x_{1} x_{4} \\
& +c_{1,1,0}^{-} x_{1} x_{3}+c_{0,0,2} \mu^{2}, \\
\Delta_{i}= & c_{0,0,0,0}+c_{0,1,0,0} x_{1}+c_{0,0,1,0} x_{2}+c_{1,0,0,0}^{-} x_{3}+c_{1,0,0,0}^{+} x_{4},
\end{aligned}
$$

Procedure :: C/K-relations @work —> Generate a system of equations that relates residues of different ordering through C/K-relations

BCJ relations + Unitarity @ work

Target :: Reduce the number of independent residues needed to compute any colour-dressed one-loop amplitude

$$
A_{n}^{1-\text { loop }}=\int d^{d \bar{l}} \frac{\mathcal{N}\left(l, \mu^{2}\right)}{D_{0} D_{1} \ldots D_{n-1}},
$$

$$
\begin{aligned}
\frac{N\left(l, \mu^{2}\right)}{D_{0} D_{1} \ldots D_{n-1}}= & \sum_{i \ll m}^{n-1} \frac{\Delta_{i j k l m}\left(l, \mu^{2}\right)}{D_{i} D_{j} D_{k} D_{l} D_{m}}+\sum_{i \ll l}^{n-1} \frac{\Delta_{i j k l}\left(l, \mu^{2}\right)}{D_{i} D_{j} D_{k} D_{l}}+\sum_{i \ll k}^{n-1} \frac{\Delta_{i j k}\left(l, \mu^{2}\right)}{D_{i} D_{j} D_{k}} \\
& +\sum_{i<j}^{n-1} \frac{\Delta_{i j}\left(l, \mu^{2}\right)}{D_{i} D_{j}}+\sum_{i}^{n-1} \frac{\Delta_{i}\left(l, \mu^{2}\right)}{D_{i}}
\end{aligned}
$$

Ingredients :: Residues @cut —> Keep under control their polynomial structure

$$
\begin{aligned}
\Delta_{i j k l m}= & c \mu^{2}, \\
\Delta_{i j k l}= & c_{0}+c_{1} x_{4}+c_{2} \mu^{2}+c_{3} x_{4} \mu^{2}+c_{4} \mu^{4}, \\
\Delta_{i j k}= & c_{0,0}+c_{1,0}^{+} x_{4}+c_{2,0}^{+} x_{4}^{2}+c_{3,0}^{+} x_{4}^{3}+c_{1,0}^{-} x_{3}+c_{2,0}^{-} x_{3}^{2}+c_{3,0}^{-} x_{3}^{3}+c_{0,2} \mu^{2}+c_{1,2}^{+} x_{4} \mu^{2}+c_{1,2}^{-} x_{3} \mu^{2}, \\
\Delta_{i j}= & c_{0,0,0}+c_{0,1,0} x_{1}+c_{0,2,0} x_{1}^{2}+c_{1,0,0}^{+} x_{4}+c_{2,0,0}^{+} x_{4}^{2}+c_{1,0,0}^{-} x_{3}+c_{2,0,0}^{-} x_{3}^{2}+c_{1,1,0}^{+} x_{1} x_{4} \\
& +c_{1,1,0}^{-} x_{1} x_{3}+c_{0,0,2} \mu^{2}, \\
\Delta_{i}= & c_{0,0,0,0}+c_{0,1,0,0} x_{1}+c_{0,0,1,0} x_{2}+c_{1,0,0,0}^{-} x_{3}+c_{1,0,0,0}^{+} x_{4},
\end{aligned}
$$

Procedure :: C/K/relations @work —> Generate a system of equations that relates residues of different ordering through C/K-relations

- The solution of the system gives us a reduce set of independent residues
— Unitarity @work —> Compute the independent residues through Unitarity Based Methods

William J. Torres Bobadilla

$$
\Delta^{(13 \ldots)} \equiv \sum_{l_{i} \in \mathcal{S}} A_{4}\left(-l_{1}, 1,2, l_{2}\right) \times A(\ldots) \times \cdots \times A(\ldots),
$$

Conclusions/Outlook

\square Further simplifications from Colour-Kinematics duality
\square Most compact representation of the Jacobi identity for kinematic numerators
V New integral and integrand relations at one-loop level
V Unitarity + C/K-duality @ work
■ LTD + C/K-duality @ work

- Provide integral relations at multi-loop level
\square More applications to come in the near future

Conclusions/Outlook

\square Further simplifications from Colour-Kinematics duality
\square Most compact representation of the Jacobi identity for kinematic numerators
V New integral and integrand relations at one-loop level
V Unitarity + C/K-duality @ work
■ LTD + C/K-duality @ work

- Provide integral relations at multi-loop level
\square More applications to come in the near future

