Mathematical aspects of the scattering amplitude for $H \rightarrow gg$ within the loop-tree duality

William J. Torres Bobadilla
Institut de Física Corpuscular
Universitat de València - CSIC

In collaboration with:
R. Hernandez-Pinto, A. Renteria, G. Rodrigo

EPS-HEP 2019
11 July 2019
Ghent, Belgium
Outline

- Motivations
- Loop-tree duality @1L
 - H->gg @1L
 - UV local renormalisation
 - IR local subtraction
- Some remarks
- Outlook & conclusions
Introduction

- Standard Model (SM) of Particle Physics \(\rightarrow\) best Quantum Field Theory

- SM leaves to much physics without descriptions \(\rightarrow\) Physics Beyond Standard Model (BSM)

- LHC results demand a refinement of our understanding of the SM physics
 High precision predictions in background processes \(\rightarrow\) New physics at the TeV scale

- Relevant observables
 \(\rightarrow\) computation of Quantum Chromodynamics (QCD) Scattering Amplitudes
Introduction

Standard Model (SM) of Particle Physics \rightarrow best Quantum Field Theory

SM leaves to much physics without descriptions \rightarrow Physics Beyond Standard Model (BSM)

LHC results demand a refinement of our understanding of the SM physics
High precision predictions in background processes \rightarrow New physics at the TeV scale

Relevant observables
\rightarrow computation of Quantum Chromodynamics (QCD) **Scattering Amplitudes**

Scattering Amplitudes

- Practical applications in particle physics
- Mathematical elegance
- Gauge invariant objects

Perturbative expansion
Introduction

- Standard Model (SM) of Particle Physics —> best Quantum Field Theory
- SM leaves too much physics without descriptions —> Physics Beyond Standard Model (BSM)
- LHC results demand a refinement of our understanding of the SM physics
 - High precision predictions in background processes —> New physics at the TeV scale
- Relevant observables
 - computation of Quantum Chromodynamics (QCD) **Scattering Amplitudes**

Motivation

- **Scattering Amplitudes** — Practical applications in particle physics
 - Mathematical elegance
 - Gauge invariant objects

- Simplify the calculations in High-Energy Physics.
- Discover hidden properties of Quantum Field Theories
- Towards NNLO is the **Next Frontier**.

[Anastasiou, Duhr, Dulat, Herzog, Mistlberger]
Dimensional regularisation schemes

Before computing multi-loop amplitudes...

Consider

\[I_0 = \int_0^\infty \frac{dx}{x} \]
Dimensional regularisation schemes

Before computing multi-loop amplitudes...

Consider

\[I_0 = \int_0^\infty \frac{dx}{x} \]

does not exist 😞
Dimensional regularisation schemes

Before computing multi-loop amplitudes...

Consider

\[I_0 = \int_0^\infty \frac{dx}{x} \quad \text{does not exist} \]

Tweak the integrand

\[I_\varepsilon = \int_0^\infty \frac{dx}{x^{1+\varepsilon}} = \int_0^1 \frac{dx}{x^{1+\varepsilon}} + \int_1^\infty \frac{dx}{x^{1+\varepsilon}} \quad (\text{with } \varepsilon \in \mathbb{C}) \]

well defined 😊
Dimensional regularisation schemes

Before computing multi-loop amplitudes...

Consider

\[I_0 = \int_0^\infty \frac{dx}{x} \]

does not exist

Tweak the integrand

\[I_\varepsilon = \int_0^\infty \frac{dx}{x^{1+\varepsilon}} = \int_0^1 \frac{dx}{x^{1+\varepsilon}} + \int_1^\infty \frac{dx}{x^{1+\varepsilon}} \quad (\text{with } \varepsilon \in \mathbb{C}) \]

well defined

\[\frac{1}{\varepsilon} \lesssim \begin{cases} \varepsilon & \Re (\varepsilon) < 0 \\ -\frac{1}{\varepsilon} & \Re (\varepsilon) > 0 \end{cases} \]
Dimensional regularisation schemes

Before computing multi-loop amplitudes...

Consider

$$ I_0 = \int_0^\infty \frac{dx}{x} \quad \text{does not exist} \quad \frown \frown $$

Tweak the integrand

$$ I_\epsilon = \int_0^\infty \frac{dx}{x^{1+\epsilon}} = \int_0^1 \frac{dx}{x^{1+\epsilon}} + \int_1^\infty \frac{dx}{x^{1+\epsilon}} \quad \text{(with } \epsilon \in \mathbb{C}) $$

well defined 😊

$$ \Re (\epsilon) \leq 0 $$

$$ \Re (\epsilon) > 0 $$

$$ I_\epsilon = 0 \ , \ \forall \epsilon \in \mathbb{C} \quad \rightarrow \quad I_0 = 0 \quad \text{(analytical continuation)} $$
Dimensional regularisation schemes

Before computing multi-loop amplitudes...

Consider

\[I_0 = \int_0^\infty \frac{dx}{x} \]

does not exist

Tweak the integrand

\[I_\varepsilon = \int_0^\infty \frac{dx}{x^{1+\varepsilon}} = \int_0^1 \frac{dx}{x^{1+\varepsilon}} + \int_1^\infty \frac{dx}{x^{1+\varepsilon}} \quad \text{(with } \varepsilon \in \mathbb{C}) \]

well defined

\[-\frac{1}{\varepsilon} \quad \Re(\varepsilon) < 0 \]

\[+\frac{1}{\varepsilon} \quad \Re(\varepsilon) > 0 \]

\[I_\varepsilon = 0 \text{, } \forall \varepsilon \in \mathbb{C} \rightarrow I_0 = 0 \]

(analytical continuation)

This was **dimensional regularisation**

William J. Torres Bobadilla

4
Motivation

We are used to

- Modify dimension of the space-time

\[\int \frac{d^4l}{(2\pi)^4} \xrightarrow{\mu_{\text{DS}}^{4-d}} \int \frac{d^d\vec{l}}{(2\pi)^d} \]

- IR and UV singularities appear after integrations

- Virtual and real correction are considered separately

Several approaches to deal with infinities

<table>
<thead>
<tr>
<th>To (d),</th>
<th>or not to (d)?</th>
</tr>
</thead>
<tbody>
<tr>
<td>traditional dimensional schemes</td>
<td></td>
</tr>
<tr>
<td>• 't Hooft / Veltman (HV) '72</td>
<td></td>
</tr>
<tr>
<td>• conventional dim. reg. (CDR) '73</td>
<td></td>
</tr>
<tr>
<td>• dim. reduction (DRED) '79</td>
<td></td>
</tr>
<tr>
<td>• four-dim. helicity (FDH) '92</td>
<td></td>
</tr>
<tr>
<td>reformulations of dimensional schemes</td>
<td></td>
</tr>
<tr>
<td>• six-dim. formalism (SDF) '09</td>
<td></td>
</tr>
<tr>
<td>• four-dim. formalism (FDF) '14</td>
<td></td>
</tr>
<tr>
<td>non-dimensional schemes</td>
<td></td>
</tr>
<tr>
<td>• implicit reg. (IREG) '98</td>
<td></td>
</tr>
<tr>
<td>• loop regularization (LORE) '03</td>
<td></td>
</tr>
<tr>
<td>• four-dim. reg. / ren. (FDR) '12</td>
<td></td>
</tr>
<tr>
<td>• four-dim. unsubtraction (FDU) '16</td>
<td></td>
</tr>
</tbody>
</table>

Motivation

In this talk

We are used to

don’t

- Modify dimension of the space-time
- IR and UV singularities appear before integrations
- Virtual and real correction are considered simultaneously

Several approaches to deal with infinities

\[\int \frac{d^4l}{(2\pi)^4} \rightarrow \mu_{\text{DS}}^4 \int \frac{d^{d-\epsilon}l}{(2\pi)^d} \]

To \(d \),

<table>
<thead>
<tr>
<th>traditional dimensional schemes</th>
</tr>
</thead>
<tbody>
<tr>
<td>’t Hooft / Veltman (HV) ’72</td>
</tr>
<tr>
<td>conventional dim. reg. (CDR) ’73</td>
</tr>
<tr>
<td>dim. reduction (DRED) ’79</td>
</tr>
<tr>
<td>four-dim. helicity (FDH) ’92</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>reformulations of dimensional schemes</th>
</tr>
</thead>
<tbody>
<tr>
<td>six-dim. formalism (SDF) ’09</td>
</tr>
<tr>
<td>four-dim. formalism (FDF) ’14</td>
</tr>
</tbody>
</table>

or not to \(d \)?

<table>
<thead>
<tr>
<th>non-dimensional schemes</th>
</tr>
</thead>
<tbody>
<tr>
<td>implicit reg. (IREG) ’98</td>
</tr>
<tr>
<td>loop regularization (LORE) ’03</td>
</tr>
<tr>
<td>four-dim. reg. / ren. (FDR) ’12</td>
</tr>
<tr>
<td>four-dim. unsubtraction (FDU) ’16</td>
</tr>
</tbody>
</table>

Motivation

In this talk

- Loop-tree duality + Four-dimensional Unsubtraction scheme

We are used to

don’t

- Modify dimension of the space-time
- IR and UV singularities appear after integrations
- Virtual and real correction are considered separately

Several approaches to deal with infinities

\[
\int \frac{d^4 l}{(2\pi)^4} \rightarrow \mu_{DS}^4 \int d^{d-\varepsilon} l
\]

[GNENDIGER, ET AL (W.J.T.) (2017)]
One loop
The loop-tree duality theorem

One-loop integrals decomposes as a linear combination of \(N \) single-cut phase-space integrals

\[
\int \ell \prod G_F(q_i) = - \sum \int \ell \prod \tilde{\delta}(q_i) G_D(q_i; q_j)
\]

\[
\tilde{\delta}(q_i) = 2\pi i \delta^{(+)} (q_i^2 - m_i^2)
\]

\[
G_D(q_i; q_j) = - \frac{1}{q_j^2 - m_j^2 - i0} \eta k_{ji}
\]

- Modify +i0 prescription of the Feynman props.
 - It compensates for the absence of multiple-cut contributions that appear in the Feynman Tree Theorem

- Lorentz-covariant dual prescription \(\rightarrow \eta \) a future-like vector

- Number of single cut dual contributions = the number of legs.

- Singularities of the loop diagram \(\rightarrow \) singularities of the dual integrals.

- Loop-Tree Duality works only on propagators.
 - Same procedure for Tensor loop integrals and scattering amplitudes.
H→gg @1L

In principle, one has

\[
\begin{array}{c}
\text{Vanish in DimReg}
\end{array}
\]

How to deal with infinities?

☆ Traditional approach: singularities cancel **after** integration
☆ Work out the Four-dimensional Unsubtracted (FDU) scheme cancellations occur **before** integration
☆ Cancellations are locally performed by means of LTD

[Kinoshita (1962)]
[Lee and Nauenberg (1964)]
In principle, one has

\[H \rightarrow gg \ @1L \]

Four-dimensional Unsubtraction scheme: keep track of IR and UV singularities

- Local UV renormalisation -> study UV behaviour @ integrand level
- Local IR subtraction -> match real contributions with virtual ones

[Vanish in DimReg]
\[H \rightarrow gg \; @1L \]

In principle, one has

\[
\text{Massless bubbles} \sim \frac{1}{\epsilon_{\text{IR}}} - \frac{1}{\epsilon_{\text{UV}}}
\]

Four-dimensional Unsubtraction scheme: keep track of IR and UV singularities

- Local UV renormalisation -> study UV behaviour @ integrand level
- Local IR subtraction -> match real contributions with virtual ones
In principle, one has

\[\text{Massless bubbles } \sim \frac{1}{\epsilon_{\text{IR}}} - \frac{1}{\epsilon_{\text{UV}}} \]

Four-dimensional Unsubtraction scheme: keep track of IR and UV singularities

- Local UV renormalisation -> study UV behaviour @ integrand level
- Local IR subtraction -> match real contributions with virtual ones

Vanish in DimReg

IR local behaviour completely cancelled

[Hernandez, Renteria, Rodrigo, W.J.T. (to appear)]
$H \rightarrow gg @1L$

In principle, one has

$$\text{Massless bubbles} \sim \frac{1}{\epsilon_{\text{IR}}} - \frac{1}{\epsilon_{\text{UV}}}$$

Apply LTD

- Amplitude can be decomposed in terms of form factors
 $$A_{\mu\nu}^{(1,f)} = \sum_{i=1}^{5} A_{i}^{(1,f)} T_{\mu\nu}^{i},$$

- “Relevant” form factors: A1 and A2
 $$T_{i}^{\mu\nu} = \left\{ g^{\mu\nu} - \frac{2p_{1}^\nu p_{2}^\mu}{s_{12}}, g^{\mu\nu}, \frac{2p_{1}^\mu p_{2}^\nu}{s_{12}}, \frac{2p_{1}^\nu p_{2}^\mu}{s_{12}}, \frac{2p_{1}^\mu p_{2}^\nu}{s_{12}} \right\}$$
$H \rightarrow gg \ @ 1L$

In principle, one has

Amplitude can be decomposed in terms of form factors

“Relevant” form factors: A_1 and A_2

$T^i_{\mu\nu} = \left\{ g^{\mu\nu} - \frac{2p_1^\mu p_2^\nu}{s_{12}}, g^{\mu\nu}, \frac{2p_1^\mu p_2^\nu}{s_{12}}, \frac{2p_1^\mu p_1^\nu}{s_{12}}, \frac{2p_2^\mu p_2^\nu}{s_{12}} \right\}$

Same structure of universal dual amplitudes + additional contribution S_1

[Hernandez, Renteria, Rodrigo, W.J.T. (to appear)]

Vanish in DimReg

Massless bubbles $\sim \frac{1}{\epsilon_{IR}} - \frac{1}{\epsilon_{UV}}$

[Diencourt-Mangin, Rodrigo, Sborlini (2018)]
In principle, one has

\[Massless\ \text{bubbles} \sim \frac{1}{\epsilon_{\text{IR}}} - \frac{1}{\epsilon_{\text{UV}}} \]

Apply LTD

- Amplitude can be decomposed in terms of form factors

\[A_{\mu\nu}^{(1,f)} = \sum_{i=1}^{5} A_{i}^{(1,f)} T_{i}^{\mu\nu}, \]

- “Relevant” form factors: A1 and A2

\[T_{i}^{\mu\nu} = \left\{ g^{\mu\nu} - \frac{2p_{1}^{\nu} p_{2}^{\mu}}{s_{12}}, \quad g^{\mu\nu}, \quad \frac{2p_{1}^{\mu} p_{2}^{\nu}}{s_{12}}, \quad \frac{2p_{1}^{\mu} p_{1}^{\nu}}{s_{12}}, \quad \frac{2p_{2}^{\mu} p_{2}^{\nu}}{s_{12}} \right\} \]

\[A_{1}^{(1,g)} = g_{g} \int_{\ell} \delta(\ell) \left[\left(\frac{\ell_{0}^{(+)}}{q_{1,0}^{(+)}} + \frac{\ell_{0}^{(+)}}{q_{2,0}^{(+)}} \right) + \frac{2(2\ell \cdot p_{12})^{2}}{s_{12}^{2} - (2\ell \cdot p_{12} - i0)^{2}} \right] \left(\frac{s_{12}^{2}}{(2\ell \cdot p_{1})(2\ell \cdot p_{2})} c_{1}^{(g)} + c_{2}^{(g)} \right) \]

\[+ \frac{2s_{12}^{2}}{s_{12}^{2} - (2\ell \cdot p_{12} - i0)^{2}} c_{3}^{(g)} \]

\[A_{2}^{(1,g)} = g_{g} \frac{c_{6}^{(g)}}{2} \int_{\ell} \delta(\ell) \left(\frac{\ell_{0}^{(+)}}{q_{1,0}^{(+)}} + \frac{\ell_{0}^{(+)}}{q_{2,0}^{(+)}} - 2 \right) \]

Same structure of universal dual amplitudes + additional contribution \(S_{1} \)

Recall A2 vanishes upon integration (gauge invariance)

LTD works @ integrand level -> A2 helps to remove “spurious” terms

[Driencourt-Mangin, Rodrigo, Sborlini (2018)]
\textbf{H}\textrightarrow gg @1L

In principle, one has

Amplitude can be decomposed in terms of form factors

\begin{align*}
A_{\mu\nu}^{(1,f)} = \sum_{i=1}^{5} A_{i}^{(1,f)} T_{\mu\nu}^{i} ,
\end{align*}

“Relevant” form factors: A1 and A2

\begin{align*}
T_{i}^{\mu\nu} = \left\{ g_{\mu\nu} - \frac{2p_{1}^{\nu} p_{2}^{\mu}}{s_{12}} , g_{\mu\nu} , \frac{2p_{1}^{\mu} p_{2}^{\nu}}{s_{12}} , \frac{2p_{1}^{\mu} p_{1}^{\nu}}{s_{12}} , \frac{2p_{2}^{\mu} p_{2}^{\nu}}{s_{12}} \right\}
\end{align*}

S1 vanishes in DimReg

c1 & c23 contain the full dependence of the amplitude

c23 \sim (d-4) \quad \text{needs to be UV renormalised @ integrand level}
$H \rightarrow gg \ @1L$

In principle, one has

$$A_{\mu\nu}^{(1,f)} = \sum_{i=1}^{5} A_{i}^{(1,f)} T^{i}_{\mu\nu},$$

"Relevant" form factors: A_1 and A_2

$$T_{i}^{\mu\nu} = \left\{ g^{\mu\nu} - \frac{2p_1^{\nu} p_2^{\mu}}{s_{12}} , g^{\mu\nu} \frac{2p_1^{\mu} p_2^{\nu}}{s_{12}} , \frac{2p_1^{\mu} p_1^{\nu}}{s_{12}} , \frac{2p_1^{\mu} p_2^{\nu}}{s_{12}} \right\}$$

c_1 & c_{23} contain the full dependence of the amplitude

$c_{23} \sim (d-4)$ needs to be UV renormalised @ integrand level

S1 vanishes in DimReg

[Hernandez, Renteria, Rodrigo, W.J.T. (to appear)]
$H \rightarrow gg @1L$

In principle, one has

\[
\text{Massless bubbles} \sim \frac{1}{\epsilon_{\text{IR}}} - \frac{1}{\epsilon_{\text{UV}}}
\]

Apply LTD

- Amplitude can be decomposed in terms of form factors

\[
A_{\mu
u}^{(1,f)} = \sum_{i=1}^{5} A_{i}^{(1,f)} T_{i}^{\mu \nu},
\]

- "Relevant" form factors: A_1 and A_2

\[
T_{i}^{\mu \nu} = \left\{ g^{\mu \nu} - \frac{2 p_{1}^{\nu} p_{2}^{\mu}}{s_{12}}, g^{\mu \nu}, \frac{2 p_{1}^{\mu} p_{1}^{\nu}}{s_{12}}, \frac{2 p_{2}^{\mu} p_{1}^{\nu}}{s_{12}}, \frac{2 p_{2}^{\mu} p_{2}^{\nu}}{s_{12}} \right\}
\]

c_1 & c_{23} contain the full dependence of the amplitude

$c_{23} \sim (d-4)$ needs to be UV renormalised @ integrand level

Previous results for the full theory

[William J. Torres Bobadilla]

[Hernandez, Renteria, Rodrigo, W.J.T. (to appear)]

[Driencourt-Mangin, Rodrigo, Sborlini (2018)]
UV local renormalisation @1L

What in practice do we do (independently of LTD)?

- **Expand the integrand in the UV limit**

 \[
 G_F (q_i) = G_F (q_{UV}) \left(1 - \left(2q_{UV} \cdot k_{i,UV} + k_{i,UV}^2 + \mu_{UV}^2 - m_i^2\right)G_F (q_{UV}) + \cdots\right)
 \]

 \[
 G_F (q_{UV}) = \frac{1}{q_{UV}^2 - \mu_{UV}^2 + i0}
 \]

- **Consider** \(I_N (\ell; \{p_i\})\) and the replacement

 - Apply the replacements \(S\) on \(I\)
 - Take the limit \(\lambda \to \infty\)
 - Select the divergent parts \(\to\) build a counter-term \(C\)
 - Fix \(C\) according to the renormalisation scheme \(\to\) In this talk \(\overline{\text{MS}}\)

[Becker, Reuschle, Weinzierl (2010)]
[Sborlini, Driencourt-Mangin, Hernandez-Pinto, Rodrigo (2016)]
UV local renormalisation @1L

What in practice do we do (independently of LTD)?

- Expand the integrand in the UV limit

\[
G_F(q_i) = G_F(q_{UV})\left(1 - (2q_{UV} \cdot k_{i,UV} + k_{i,UV}^2 + \mu_{UV}^2 - m_i^2) G_F(q_{UV}) + \cdots\right)
\]

\[
G_F(q_{UV}) = \frac{1}{q_{UV}^2 - \mu_{UV}^2 + i\epsilon}
\]

- Consider \(I_N(\ell; \{p_i\}) \) and the replacement

\[
S: \begin{cases}
\ell^2 \rightarrow \lambda^2 \ell^2 + (1 - \lambda^2)\mu^2 \\
\ell \cdot p_i \rightarrow \lambda \ell \cdot p_i
\end{cases}
\]

- Apply the replacements \(S \) on \(I \)
- Take the limit \(\lambda \rightarrow \infty \)
- Select the divergent parts \(\rightarrow \) build a counter-term \(C \)
- Fix \(C \) according to the renormalisation scheme \(\rightarrow \) In this talk \(\overline{\text{MS}} \)

E.g. \(e\mu @1\text{-loop}, \) the simplest application,

\[
\int \frac{d^d \ell}{(2\pi)^d} \frac{1}{q_{UV}^2 - \mu_{UV}^2} \left(\frac{c_1}{(q_{UV}^2 - \mu_{UV}^2)^3} + \frac{\mu_{UV}^4 c_2 + \mu_{UV}^2 c_3}{(q_{UV}^2 - \mu_{UV}^2)^2} + \frac{\mu_{UV}^2 c_4 + c_5}{q_{UV}^2 - \mu_{UV}^2} + c_6 \right) = \int \frac{d^d \ell}{(2\pi)^d} \frac{4}{3\epsilon_{UV}} \left(\frac{\mu_{UV}^2}{\mu_{UV}^2} \right)^\epsilon c_\Gamma
\]

In practice \(\rightarrow \) compute tadpoles with raised powers
Decay width of $H \rightarrow gg$ @1L

Local UV renormalisation

Parametric form of the local UV counter-term

$$\frac{\alpha}{\pi} C_A g_s^2 \int_{\text{UV}} G_F^2(q_{3;\text{UV}}) \left[\frac{(p_1 \cdot q_{3;\text{UV}})^2 (p_2 \cdot q_{3;\text{UV}})^2}{s_{12}} G_F^2(q_{3;\text{UV}}) c_4^{(x)} + \frac{(p_1 \cdot q_{3;\text{UV}})(p_2 \cdot q_{3;\text{UV}})}{s_{12}} G_F(q_{3;\text{UV}}) c_3^{(x)} \right]$$

$$+ c_2^{(x)} + \mu_{\text{UV}}^2 G_F(q_{3;\text{UV}}) c_3^{(x,\text{sub})}$$
Decay width of $H \to gg$ @1L

Local UV renormalisation

Parametric form of the local UV counter-term

$$\frac{\int_{UV} C_A g_s^2}{\int_{UV}} \left[\frac{(p_1 \cdot q_3;UV)^2}{s_{12}^2} \frac{(p_2 \cdot q_3;UV)^2}{s_{12}} G_F^2(q_3;UV) c_4^{(x)} + \frac{(p_1 \cdot q_3;UV)(p_2 \cdot q_3;UV)}{s_{12}} G_F(q_3;UV) c_3^{(x)} \right]$$

$$+ c_2^{(x)} + \mu_{UV}^2 G_F(q_3;UV) c_3^{(x,sub)}$$

$$c_4^{(g)} = c_3^{(g,sub)} = 0,$$

$$c_3^{(g)} = \frac{8(3d - 10)}{d - 2},$$

$$c_2^{(g)} = \frac{(d - 10)(d - 3)}{d - 2}.$$
Decay width of $H\rightarrow gg$ @1L

Local UV renormalisation

Parametric form of the local UV counter-term

\[i C_A g_s^2 \int_{QE} G_F^2 (q_3; UV) \left[\frac{(p_1 \cdot q_3; UV)^2 (p_2 \cdot q_3; UV)^2}{s_{12}^2} G_F^2 (q_3; UV) c_4^{(x)} + \frac{(p_1 \cdot q_3; UV)(p_2 \cdot q_3; UV)}{s_{12}} G_F (q_3; UV) c_3^{(x)} \right] + c_2^{(x)} + \mu_{UV}^2 G_F (q_3; UV) c_3^{(x, sub)} \]

Renormalisation of massless bubbles

$C_4^{(g)} = C_3^{(g, sub)} = 0$, $C_4^{(f)} = \frac{8(3d - 10)}{d - 2}$, $C_2^{(f)} = 0$, $C_3^{(f, sub)} = 0$

$C_4^{(g)} = 32(d - 2)$, $C_3^{(g)} = -8(d - 2)$, $C_2^{(g)} = \frac{(d - 6)}{2}$, $C_3^{(g, sub)} = -\frac{(d - 2)}{3}$
Decay width of $H \rightarrow gg \ @ 1L$

Local UV renormalisation

Parametric form of the local UV counter-term

\[
\frac{\alpha}{\pi} C_A g_s^2 \int_{\mu} \frac{G_F^2(q_{3;UV})}{s_{12}^2} \left[\frac{(p_1 \cdot q_{3;UV})^2}{s_{12}^2} G_F^2(q_{3;UV}) c_4^{(g)} + \frac{(p_1 \cdot q_{3;UV})(p_2 \cdot q_{3;UV})}{s_{12}} G_F(q_{3;UV}) c_3^{(g)} \right] + c_2^{(g)} + \mu_{UV}^2 G_F(q_{3;UV}) c_3^{(g,sub)}
\]

Renormalisation of massless bubbles

Separately integration recovers expected results

\[
p_1^g = \frac{\sqrt{s_{12}}}{2} (1, 0, 1), \quad p_2^g = \frac{\sqrt{s_{12}}}{2} (1, 0, -1), \\
q_i^g = \frac{\sqrt{s_{12}}}{2} \left(\sqrt{\xi_{i,0}^2 + \mu_{UV}^2}, 2\xi_{i,0}\sqrt{v_t(1 - v_t)e_{i,\perp, \xi_{i,0} (1 - 2v_t)} \right)
\]

\[
c_4^{(g)} = c_3^{(g,sub)} = 0, \\
c_3^{(g)} = \frac{8(3d - 10)}{d - 2}, \\
c_2^{(g)} = \frac{(d - 10)(d - 3)}{d - 2}
\]

\[
c_4^{(f)} = -64, \\
c_3^{(f)} = 16, \\
c_2^{(f)} = 0, \\
c_3^{(f,sub)} = 0, \\
c_4^{(g)} = 32(d - 2), \\
c_3^{(g)} = -8(d - 2), \\
c_2^{(g)} = \frac{d - 6}{2}, \\
c_3^{(g,sub)} = -\frac{(d - 2)}{3}
\]
Decay width of $H\rightarrow gg$ @1L

Local IR subtraction

One-loop $(q_i^\mu)^\ast$Born

Momentum conservation

Real*Real

$p_{ir}^\prime \rightarrow p_i^\prime + p_r^\prime$

Motivated by the factorisation properties of QCD [Sborlini, Driencourt-Mangin, Hernandez-Pinto, Rodrigo (2016)]

$$p_i^\prime\mu = (1 - \alpha_i) p_j^\prime\mu,$$

$$\alpha_i = \frac{(q_i - p_i)^2}{2p_j \cdot (q_i - p_i)},$$

$$p_k^\prime\mu = p_k^\mu,$$

$k \neq i, j$

Match 1\rightarrow3 kinematics from 1\rightarrow2 kinematics. Take into account loop three-momentum

Work by region to separate collinear and soft divergencies
Decay width of $H\rightarrow gg @1L$

Local IR subtraction

\[\tilde{g}_{i-1} \]
\[(q_i) \]
\[p_i \]
\[\tilde{p}_{ir} \]
\[p_i' \]
\[p_r' \]
\[\tilde{p}_{ir}' \]

One-loop $(q_i^\mu)^*\text{Born}$

Momentum conservation

Real*Real

Motivated by the factorisation properties of QCD

\[p_r'^\mu = q_i^\mu, \]
\[p_i'^\mu = p_i'^\mu - q_i^\mu + \alpha_i p_j^\mu, \quad \alpha_i = \frac{(q_i - p_i)^2}{2p_j \cdot (q_i - p_i)}, \]
\[p_j'^\mu = (1 - \alpha_i) p_j^\mu, \quad p_k'^\mu = p_k^\mu, \quad k \neq i, j \]

Match 1\rightarrow 3 kinematics from 1\rightarrow 2 kinematics. Take into account loop three-momentum

Work by region to separate collinear and soft divergencies

\[\text{[Sborlini, Driencourt-Mangin, Hernandez-Pinto, Rodrigo (2016)]} \]
Some remarks about the one- and two-loop calculations
Remarks

Cross check of calculations

Adaptive integrand decomposition

- Splits $d=4-2\varepsilon$ into parallel and orthogonal directions
- Nice properties for less than 5 external legs
- Numerator and denominators depend on different variables

\[
\int \prod_i d^d \bar{l}_{i\parallel} \int \prod_{1\leq i \leq j \leq \ell} d\lambda_{ij} \, G(\lambda_{ij}) \frac{d^d - 1 - \ell}{2} \int d\Theta_\perp \frac{\mathcal{N}(\bar{l}_{i\parallel}, \lambda_{ij} \Theta_\perp)}{D_1(\bar{l}_{i\parallel}, \lambda_{ij}) \cdots D_m(\bar{l}_{i\parallel}, \lambda_{ij})}
\]

Expand in Gegenbauer polynomials

\[
\int d\Theta_\perp = \int_{-1}^1 \prod_{i=1}^{4-d} \prod_{j=1}^{\ell} d\cos \theta_i + j_{-1,j} (\sin \theta_i + j_{-1,j})^{d-1-i-j}
\]

Straightforward integration of transverse components

and identification of spurious terms

\[
d = d_{\parallel} + d_\perp
\]

\[
d_{\parallel} = n - 1
\]

\[
d_\perp = (5 - n) - 2\varepsilon
\]

[I.B.P. reduction

Literature

Traditional methods

Integrand decomposition

[Mastrolia, Peraro, Primo (2016)]

[Mastrolia, Peraro, Primo, W.J.T. (2016)]
Adaptive integrand decomposition (AID)

Algorithm

- For each integrand, adapt longitudinal and parallel components
- Denominators depend on the minimal set of variables
- Loop components expressed as linear combination of denominators
- Poly division and integration reduced to substitution rules
- Extra dimension variables are always reducible

Recipe in 3 steps

1) Divide and get \(\Delta(\bar{l}_i, \lambda_{ij}, \Theta_{\perp}) \)
2) Integrate out transverse variables \(\Theta_{\perp} \)
3) Divide again to get rid of \(\lambda_{ij} \)

Features

- Final decomposition in terms of ISPs
- No need for TID
- Output ready to apply IBPs
- @1L no need of any integral identity

\[\mathcal{N}(l_i, \lambda_{ij}, \Theta_{\perp}) \]
\[D_1(\bar{l}_i, \lambda_{ij}) \cdots D_m(\bar{l}_i, \lambda_{ij}) \]

AIDA

William J. Torres Bobadilla

[Mastrolia, Peraro, Primo (2016)]
[Mastrolia, Peraro, Primo, W.J.T. (2016)]
[Mastrolia, Peraro, Primo, Ronca, W.J.T. (work in progress)]
Adaptive integrand decomposition (AID)

Algorithm

- For each integrand, adapt longitudinal and parallel components
- Denominators depend on the minimal set of variables
- Loop components expressed as linear combination of denominators
- Poly division and integration reduced to substitution rules
- Extra dimension variables are always reducible

Recipe in 3 steps

1) Divide and get $\Delta (\bar{l}_{||i}, \lambda_{ij}, \Theta_\perp)$
2) Integrate out transverse variables Θ_\perp
3) Divide again to get rid of λ_{ij}

Features

- Final decomposition in terms of ISPs
- No need for TID
- Output ready to apply IBPs
- @1L no need of any integral identity

Algorithm already **automated** AIDA

[Adaptive integrand decomposition (AID) by William J. Torres Bobadilla] [Mastrolia, Peraro, Primo, Ronca, W.J.T. (work in progress)]
Conclusions/Outlook
Conclusions/Outlook

We have reached:

- Straightforward application of LTD @ 1-L
- Matched virtual and real correction by means of FDU
- Application of LTD in effective field theoris
- Renormalisation @ 1-L (at integrand level) -> completely under control

We are working on:

- Deal with processes at two loops that contain
 - Threshold singularities (contour deformation)
 - IR singularities
- Extend FDU to two loops

To be continued...

>> Driencourt-Mangin
>> Sborlini

William J. Torres Bobadilla
Conclusions/Outlook

We have reached:

- Straightforward application of LTD @ 1-L
- Matched virtual and real correction by means of FDU
- Application of LTD in effective field theoris
- Renormalisation @ 1-L (at integrand level)-> completely under control

We are working on:

- Deal with processes at two loops that contain
 - Threshold singularities (contour deformation)
 - IR singularities
- Extend FDU to two loops

To be continued...

>> Driencourt-Mangin
>> Sborlini

William J. Torres Bobadilla