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The Standard Model Effective Field Theory

Lack of direct evidence for BSM physics at the LHC 
⟶ Standard Model Effective Field Theory (SMEFT): 

model-independent interpretation
New physics at high energy scales

Heightened energy dependence and modified 
kinematics
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t ̅tb$b is sensitive to a set of four-quark dim. 6 operators.

MFV-inspired approach to separate 4-Heavy, 2-Heavy-2-Light and 4-Light operators

We focus on 4-Heavy operators 
2H2L are constrained much more by t ̅t and b$b production via q$q initial state

b̄

b
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t

W−

W+

g

g

b

ν̄ℓ

ℓ−

b̄

b

ℓ+

νℓ
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t ̅tb$b in SMEFT
four-heavy-quark operators
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Some operators can be constrained by four top as well
ex: C. Zhang Chin. Phys.C42(2018), no. 2 023104

Degeneracy in four-top, lifted for ! ̅!#$# !

Pre-requisite:
t ̅tb$b has a sufficiently large production cross section (~ 3 pb) to exploit differential 
kinematical information with 300 fb-1 (after Run III)! 
(for comparison: '((((~ 9 fb)

t ̅tb$b in SMEFT
Complementarity to four top quark production
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The name of the game:
Increasing sensitivity to SMEFT operators

1.6. The Standard Model E�ective Field Theory 27

⌦
g⇤ g⇤ ≠≠≠≠æ

L2∫p2 g2
⇤/⇤2

Figure 1.11: Feynman diagrams describing a new mediator W with mass L
that couples to the SM particles with a new physics coupling gú (left) and the

corresponding EFT vertex describing the point–like interaction (right).

with new operators of dimension larger than four [99–101], which are suppressed by
powers of an energy scale L that represents the typical energy scale of the new physics
resonance that the EFT describes. This is expressed by Eq. (1.27), where the index d
denotes the dimensionality of the operator O and the index i runs over all allowed op-
erators of a given dimension. The coe�cient Ci is a dimensionless coupling constant
that is called the Wilson coe�cient.

LSMEFT = LSM +
ÿ

d>4

ÿ

i

Ci

Ld≠4 O
(d)
i (1.27)

The allowed operators need to obey the gauge invariance of the SM gauge
group. There exists only one such operator of dimension five, which is a lepton–
number-violating operator that could provide a mass term for the neutrinos [102]. At
dimension six however, a whole new world of operators opens up which are suppressed
by the new physics scale squared (≥ L≠2). Depending on the flavor assumptions, the
number of dimension six operators can go as high as a few thousands if one assumes
full flavor–non–universality. However, the minimal set of operators needed in a fully
flavor–universal scenario is 59. There exists a freedom in choosing a particular basis
of operators to fully describe the SMEFT at dimension six. A popular choice is
the so–called Warsaw basis [101]. Higher order operators are suppressed by even
higher orders of L, and can often be neglected to first order. Nevertheless for
some processes the higher order operators are relevant, or even the first relevant
contributions to consider. Therefore one should always validate whether or not
higher orders can safely be neglected. It is useful to note that all operators with odd-
numbered dimensions can only generate baryon or lepton number violating processes.

Any observable, such as a cross section, or a number of observed events in a
given phase space region, can be expressed in terms of its SM value and its additional
contributions due to the SMEFT e�ects. For contributions of dimension six operators,
the functional form of an observable ‡ can be expressed as in Eq. (1.28), where the
indices i and j run over the number of operators that are considered for the given
process and ‡̃i and ”̃i,j are coe�cients to be determined. In this notation, ‡̃i signifies
the strength of the interference of the SMEFT operators with the SM, whereas ”̃i,j
represents the pure EFT contribution, including quadratic terms for a single operator
and the interference e�ects amongst SMEFT operators.

‡ = ‡SM +
ÿ

i

Ci

L2 ‡̃i +
ÿ

i,j

Ci Cj

L4 ”̃i,j (1.28)

� = �SM + p1 ·
Ci

⇤2
+ p2 ·

C2
i

⇤4
1 operator: 

Ci

0-1 +1

�

�SM

small sensitivity
larger sensitivity

interference quadratic (pure EFT)
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Combine all available kinematics in a (shallow) neural network (NN) to select EFT 
enriched phase space.

Instead of a binary classifier (SM vs EFT), we exploit multi-class structure to also 
distinguish amongst EFT operators with left-handed top quark currents (tL) and with 
right-handed top quark currents (tR)!

...

P(SM)

P(tL)

P(tR)

50 nodes 3 output classes18 kinematic input 
observables

(10% dropout)

3X

i=1

Pi = 1

Learning the effective operators
multi-class neural network classifier
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One operator at a time: dedicated 
SM vs tL/tR outputs

Multiple operators: SM vs EFT and 
tL vs tR outputs

Learning the effective operators
combining NN outputs
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Summary of the obtained (projected) 95% CL 
constraints on all relevant operators (one-by-one).

15- 10- 5- 0 5 10 15

]-295% CL limits [TeV
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Template Fit
Neural Network

 selection4bM
-1CMS @ 300 fb

Limits on individual operators
Sensitivity study

Factor ~2 improvement from 
fiducial phase space definition to 

EFT-enriched NN selection!



11

case study: operators with 
right-handed top currents (tR) or 
left-handed top currents (tL)

Contributions from multiple operators
one LH and one RH top-quark operator
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2-dim phase space of NN outputs
x-axis: SM vs EFT (tL and tR)
y-axis: tL vs tR
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Case-study: Consider two non-zero Wilson coefficients: !"#$ and !%#$
à Assume an observation of the SM: (!"#$ , !%#$ ) = (0,0)

Contributions from multiple operators
SM-hypothesis → limits
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Case-study: Consider two non-zero Wilson coefficients: !"#$ and !%#$
à Assume an observation of the SM: (!"#$ , !%#$ ) = (0,0)
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Case-study: Consider two non-zero Wilson coefficients: !"#$ and !%#$
à Assume an observation of EFT signal: (!"#$ , !%#$ ) = (5,3)

Contributions from multiple operators
SMEFT-hypothesis → observation?



]-2 [TeV1
QbC

8- 6- 4- 2- 0 2 4 6 8

]
-2

 [T
eV

1 tbC

8-
6-
4-
2-
0
2
4
6
8

SM vs EFT SR 1 & SR 2
combined

) = (5.0,3.0)1
tb,C1

Qb
(C

19

)
R

) + P(t
L

discriminator P(t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

) R
) +

 P
(t

L
P(

t
) L

P(
t

di
sc

rim
in

at
or

 

0

0.2

0.4

0.6

0.8

1
SM left-handed top

SM+EFT
right-handed top
SM+EFT

SR 1

SR 2

 

Contributions from multiple operators
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Case-study: Consider two non-zero Wilson coefficients: !"#$ and !%#$
à Assume an observation of EFT signal: (!"#$ , !%#$ ) = (5,3)
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Case-study: Consider two non-zero Wilson coefficients: !"#$ and !%#$
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t ̅tb$b is an indispensable component in a global fit of the top-quark interactions in the 
SMEFT at the LHC!

Large enough cross section to exploit differential information
First direct constraints on a specific set of operators

Multi-class machine learning algorithms are a suitable tool for interpreting LHC data in this 
framework!

Intrinsically large SMEFT parameter space
High-multiplicity final states with inter-correlated information
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Probing multiple SMEFT couplings simultaneously 
allow to pinpoint (or constrain) more efficiently the 
origin (absence) of a possible excess!

Summary
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Backup
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Introduction: t ̅tb$b production

A

B

C

D

A. t ̅tb$b is important background for t ̅tH (H → b$b ). 
Recent discovery of this Higgs production mode
CMS: Phys. Rev. Lett. 120 (2018), ATLAS: ArXiv:1411.5621

B. t ̅tb$b (t ̅tb$b/ttjj) has therefore been measured by 
CMS and ATLAS (7, 8 & 13 TeV)
CMS: Phys. Lett. B 746 (2015) 132, Phys. Lett. B 776 (2018) 355, ATLAS: 
Phys. Rev. D 89, 072012 (2014), Eur.Phys.J. C76 (2016), no.1, 11

C. Difficult modeling (different mass scales, collinear 
splitting,…) à large effort from theory community
example: T. Jezo et al. Eur.Phys.J. C78 (2018), no.6, 502

D. ??? à Indispensable component in global fit of 
top-quark interactions!
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Model building and generator 
software details

Dimension-6 four-fermion EFT operators
Feynrules model provided by LHC TOP WG

LO matrix element calculation
MadGraph

Parton showering
Pythia 8

Detector simulation and event reconstruction
Delphes

UFO output: ��������	

Visible phase space 
at particle level

Phase space after event 
reconstruction and selection
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EFT validity
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Fix ! = 1 TeV and express limits in [TeV-2]

All energy scales associated to the final 
state are imposed to be below Mcut.
à HT (scalar sum of all visible final state 
objects) is a good example.
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Strategy

Cross section measurement in the 
fiducial detector volume
à CMS ttbb/ttjj @ 13 TeV

Phys. Lett. B 776 (2018) 355

Selection of kinematic phase space to 
enrich in EFT contributions (using m4b)
à reconstructed phase space needed!

Learning effective operators: Combine 
kinematic information of the ttbb final 

state into machine learning tools
à Select EFT enriched phase space

à Distinguish amongst EFT operators!
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Cross section in the fiducial 
detector volume

x-sec

CSM Collaboration, Measurements of ! ̅! cross sections in 
association with b jets and inclusive jets and their ratio 
using dilepton final states in pp collisions at # = 13 TeV, 
Phys. Lett. B 776 (2018) 355

�tt̄bb̄,CMS = 88± 12(stat.)± 29(syst.) fb

Integrated luminosity = 2.3 fb-1
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Cross section in the fiducial 
detector volume

x-sec
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association with b jets and inclusive jets and their ratio 
using dilepton final states in pp collisions at # = 13 TeV, 
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Cross section in the fiducial 
detector volume

x-sec
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Tailoring the kinematical phase space
M4b

Step 1: move to the reconstructed phase space: Dileptonic decays of the top quarks

Step 2: identify quantities that are sensitive to the EFT operators (∆R, Minv, pT, ") à M4b

Step 3: Make a selection on this quantity and derive the effective cross section dependence
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Tailoring the kinematical phase space
M4b

Question: What cut to choose on M4b?
Answer: The one that optimizes the sensitivity!

à increase relative population of EFT contributions
à without blowing up statistical uncertainty on the SM measurement
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Learning the effective operators
multiple operators
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The NN has indeed learned to distinguish amongst tL and tR operators!
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Tailoring the kinematical phase space
M4b

Prospects for 300 fb-1 after event reconstruction/selection and M4b > 1.1 TeV
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à Improvement with a factor ~2!
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Learning the effective operators
one operator at a time
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à significant further improvement!

Once again the cut value is chosen 
to optimize the sensitivity
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Learning the effective operators
one operator at a time

Question: What cut to choose on the NN ouput?
Answer: The one that optimizes the sensitivity!

à increase relative population of EFT contributions
à without blowing up statistical uncertainty on the SM measurement

NN output > 0.83

NN
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Backup: Neural Network training

• 18 inputs + RELU + 1 hidden layer (50 neurons) + RELU + Dropout (10%) +  3 
outputs + SOFTMAX (sum=1)

• Mini-batches of size 128, training for 100 epochs
• Loss function: Categorical cross entropy
• Optimizer: Stochastic gradient descent

o Initial learning rate = 0.005
o Decay = 10-6

o Nestrov momentum = 0.8

number of epochs
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Outlook

• Fully marginalized limits when more precise measurements become available

• Method is generic and can be applied to other topologies / final states!

• Increased complexity of the network (Deep learning) or more advanced machine 
learning techniques may result in better sensitivity.

• Question for the future: How much can we push these algorithms to distinguish 
different EFT operators.
o We demonstrated a distinction between tL and tR operators
o Distinguish color singlet operators from color octet ones would be possible if 

one includes interference effects during the training phase!
(becomes dependent on the value of the Wilson coefficient 
à Parametrized learning approach?)

o Can you (ideally) distinguish each individual operator or are some of them 
indistinguishable?
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2. t ̅tb&b in SMEFT: comparison to four top

152 Chapter 6. Probing new physics in the SMEFT

in this chapter are compared to other existing bounds from four–top–quark mea-
surements in Tab. 6.1. The first column shows individual 95% CL intervals (for
projections to 300 fb≠1) from four–top–quark production [101] assuming a value
of Mcut at 4 TeV. These constraints assume an upper limit of the four–top–quark
signal strength, µ < 1.87, obtainable at the LHC with 300 fb≠1 at 13 TeV [271]. The
second column quotes results from the four–top–quark measurement by CMS in the
single lepton and opposite–sign dilepton final–states [100], using 35.8 fb≠1 at 13 TeV.
No upper threshold on the allowed energy scales has been applied in this analysis.
The third column shows the bounds from a global fit of multiple SMEFT operators
to top–quark related measurements at center–of–mass energies of 8 and 13 TeV [98].
These bounds result mostly from the CMS measurement of four–top–quark produc-
tion in the same–sign dilepton and multilepton final–states [66] at 13 TeV using
35.9 fb≠1. The final column represents the best sensitivities obtained from the ttbb
study presented in this chapter for comparison.

Table 6.1: Comparison between the sensitivity of tttt and ttbb production to the
mutual SMEFT operators. The first column shows individual 95% CL intervals
(for projections to 300 fb≠1) from four–top–quark production [101] at 13 TeV,
assuming a value of Mcut at 4 TeV. The second column quotes 95% CL intervals
from the four–top–quark measurement by CMS in the single lepton and opposite–
sign dilepton final–states [100], using 35.8 fb≠1 at 13 TeV. The third column
shows the bounds from a global fit of multiple SMEFT operators to top–quark
related measurements at center–of–mass energies of 8 and 13 TeV [66, 98]. The
last column compares these intervals to the best constraints from ttbb production

(assuming 300 fb≠1 at 13 TeV) obtained in this work.

4-top (300 fb≠1)
(Mcut = 4 TeV)

4-top (35.8 fb≠1)
(no Mcut)

global fit
(no Mcut)

ttbb (300 fb≠1)
(Mcut = 2 TeV)

C1
QQ [≠2.8, 2.5] [≠2.2, 2.0] [≠5.4, 5.2] [≠2.1, 2.3]

C8
QQ [≠8.4, 7.4] n.a. [≠21, 16] [≠4.5, 3.1]

C1
Qt [≠2.2, 2.3] [≠3.5, 3.5] [≠4.9, 4.9] [≠2.1, 2.3]

C8
Qt [≠5.1, 4.1] [≠7.9, 6.6] [≠11, 8.7] [≠3.9, 3.8]

An additional di�erence between the two processes is the comparative rarity of
four–top–quark production. The four–top–quark cross section in 13 TeV pp collisions
is expected to be of the order of 9 fb [64], whereas the cross section for the ttbb
process is predicted to be in the order of ≥2–3 pb (see Tab. 5.11). This results in
the limited size of the available datasets to search for four–top–quark production
and means that it will only ever be measured at the inclusive level with the available
dataset of 300 fb≠1 that will be collected by the end of Run–3 of the LHC. On the
contrary, ttbb production does not su�er from this low cross section and therefore
di�erential measurements are now already feasible for this process [14]. The methods
developed in the rest of this chapter rely on the su�ciently large datasets available
to measure di�erential properties of ttbb production, assuming a projected integrated
luminosity of 300 fb≠1.
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