Learning to pinpoint effective operators at the LHC: a study of the $t\bar{t}b\bar{b}$ signature

Jorgen D'Hondt^(a), Alberto Mariotti^(a,b), Ken Mimasu^(c), **Seth Moortgat**^(a), Cen Zhang ^(d)

(a) Vrije Universiteit Brussel – Interuniversity Institute for High Energies (IIHE) Pleinlaan 2, B-1050 Brussels, Belgium

- (b) Vrije Universiteit Brussel, Theoretische Natuurkunde Pleinlaan 2, B-1050 Brussels, Belgium
- (c) Université catholique de Louvain Centre for Cosmology, Particle Physics and Phenomenology (CP3) Chemin du Cyclotron 2, B-1348 Louvain-La-Neuve, Belgium
- (d) Chinese Academy of Sciences, Institute of High Energy Physics Beijing 100049, China

horizons

ArXiv: 18

1807.02130

JHEP11(2018)131

Contents

- 1. SMEFT: ttbb and its virtues
 - a. Four-quark operators
 - b. Complementarity to four top
- 2. Learning the effective operators
 - 1. Individual constraints
 - 2. Multiple operators
- 3. Conclusion

The Standard Model Effective Field Theory

Lack of direct evidence for BSM physics at the LHC

- → Standard Model Effective Field Theory (SMEFT):
 - model-independent interpretation
 - New physics at high energy scales
 - Heightened energy dependence and modified kinematics

Extend SM Lagrangian up to dim. 6:

(→ Leading B & L conserving contributions)

 $\mathcal{L} = \mathcal{L}_{SM} + \sum \frac{C_i}{\Lambda^2} O_i^{(6)}$

dim. 6

ttbb in SMEFT four-heavy-quark operators

 $t\bar{t}b\bar{b}$ is sensitive to a set of four-quark dim. 6 operators.

MFV-inspired approach to separate 4-Heavy, 2-Heavy-2-Light and 4-Light operators

We focus on 4-Heavy operators

2H2L are constrained much more by $t\bar{t}$ and $b\bar{b}$ production via $q\bar{q}$ initial state

Operator	$t \bar{t} b \bar{b}$
$\overline{O_{QQ}^{1} = \frac{1}{2} \left(\bar{Q} \ \gamma_{\mu} \ Q \right) \left(\bar{Q} \ \gamma^{\mu} \ Q \right)},$	1
$O_{QQ}^8 = \frac{1}{2} \left(\bar{Q} \ \gamma_{\mu} \ T^A \ Q \right) \left(\bar{Q} \ \gamma^{\mu} \ T^A \ Q \right),$	/
$O_{tb}^{1} = (\bar{t} \gamma_{\mu} t) (\bar{b} \gamma_{\mu} b),$	1
$O_{tb}^{8} = (\bar{t} \gamma_{\mu} T^{A} t) (\bar{b} \gamma_{\mu} T^{A} b),$	✓
$O_{tt}^{1} = (\bar{t} \gamma_{\mu} t) (\bar{t} \gamma_{\mu} t),$	
$O_{bb}^{1} = (\bar{b} \gamma_{\mu} b) (\bar{b} \gamma_{\mu} b),$	
$O_{Qt}^{1} = \left(\bar{Q} \ \gamma_{\mu} \ Q\right) \left(\bar{t} \ \gamma^{\mu} \ t\right),$	✓
$O_{Qt}^{8} = \left(\bar{Q} \gamma_{\mu} T^{A} Q\right) \left(\bar{t} \gamma^{\mu} T^{A} t\right),$	/
$O_{Qb}^{1} = (\bar{Q} \gamma_{\mu} Q) (\bar{b} \gamma^{\mu} b),$	1
$O_{Qb}^{8} = (\bar{Q} \gamma_{\mu} T^{A} Q) (\bar{b} \gamma^{\mu} T^{A} b),$	/
$O_{QtQb}^{1} = (\bar{Q} \ t) \varepsilon (\bar{Q} \ b),$	✓
$O_{OtOb}^{8} = (\bar{Q} T^A t) \varepsilon (\bar{Q} T^A b).$	/

ttbb in SMEFT Complementarity to four top quark production

Some operators can be constrained by four top as well

ex: C. Zhang Chin. Phys.C42(2018), no. 2 023104

Operator	$t ar{t} b ar{b}$	$t ar{t} t t ar{t}$
$O_{QQ}^{1} = \frac{1}{2} \left(\bar{Q} \gamma_{\mu} Q \right) \left(\bar{Q} \gamma^{\mu} Q \right),$	✓	$C_{QQ}^{(+)} = \frac{1}{2}C_{QQ}^1 + \frac{1}{6}C_{QQ}^8$
$O_{QQ}^8 = rac{1}{2} \left(ar{Q} \ \gamma_\mu \ T^A \ Q ight) \left(ar{Q} \ \gamma^\mu \ T^A \ Q ight),$	✓	$\begin{bmatrix} \checkmark \end{bmatrix}$ $C_{QQ} = \frac{1}{2}C_{QQ} + \frac{1}{6}C_{QQ}$
$O_{tb}^{1} = (\bar{t} \gamma_{\mu} t) (\bar{b} \gamma_{\mu} b),$	✓	Degeneracy in four-top, lifted for $t \bar{t} b \bar{b}$!
$O_{tb}^{8} = (\bar{t} \gamma_{\mu} T^{A} t) (\bar{b} \gamma_{\mu} T^{A} b),$	✓	
$O_{tt}^1 = (\bar{t} \gamma_\mu t) (\bar{t} \gamma_\mu t),$		✓
$O_{bb}^1 = (\bar{b} \gamma_{\mu} b) (\bar{b} \gamma_{\mu} b),$		
$O_{Qt}^{1} = \left(\bar{Q} \ \gamma_{\mu} \ Q\right) \left(\bar{t} \ \gamma^{\mu} \ t\right),$	✓	✓
$O_{Qt}^{8} = \left(\bar{Q} \gamma_{\mu} T^{A} Q\right) \left(\bar{t} \gamma^{\mu} T^{A} t\right),$	✓	✓
$O_{Qb}^{1} = \left(\bar{Q} \ \gamma_{\mu} \ Q\right) \left(\bar{b} \ \gamma^{\mu} \ b\right),$	✓	
$O_{Qb}^{8} = \left(\bar{Q} \gamma_{\mu} T^{A} Q\right) \left(\bar{b} \gamma^{\mu} T^{A} b\right),$	✓	
$O_{QtQb}^{1} = (\bar{Q} \ t) \varepsilon (\bar{Q} \ b),$	✓	
$O_{QtQb}^{8} = \left(\bar{Q} \ T^{A} \ t\right) \varepsilon \left(\bar{Q} \ T^{A} \ b\right).$	✓	

Pre-requisite:

 $t\bar{t}b\bar{b}$ has a sufficiently large production cross section (\sim 3 pb) to exploit differential kinematical information with 300 fb-1 (after Run III)!

(for comparison: $\sigma_{tttt} \sim 9$ fb)

The name of the game: Increasing sensitivity to SMEFT operators

interference

quadratic (pure EFT)

$$\sigma = \sigma_{SM} + \sum_{i} \frac{C_i}{\Lambda^2} \ \tilde{\sigma}_i + \sum_{i,j} \frac{C_i \ C_j}{\Lambda^4} \ \tilde{\delta}_{i,j}$$

1 operator:
$$\sigma = \sigma_{\rm SM} + p_1 \cdot \frac{C_i}{\Lambda^2} + p_2 \cdot \frac{C_i^2}{\Lambda^4}$$

The name of the game: Increasing sensitivity to SMEFT operators

interference

quadratic (pure EFT)

$$\sigma = \sigma_{SM} + \sum_{i} \frac{C_i}{\Lambda^2} \ \tilde{\sigma}_i + \sum_{i,j} \frac{C_i \ C_j}{\Lambda^4} \ \tilde{\delta}_{i,j}$$

$$\sigma = \sigma_{\rm SM} + p_1 \cdot \frac{C_i}{\Lambda^2} + p_2 \cdot \frac{C_i^2}{\Lambda^4}$$

Learning the effective operators multi-class neural network classifier

Combine all available kinematics in a (shallow) neural network (NN) to select EFT enriched phase space.

Instead of a binary classifier (SM vs EFT), we exploit **multi-class** structure to also **distinguish amongst EFT operators** with left-handed top quark currents (t_L) and with right-handed top quark currents (t_R)!

Learning the effective operators combining NN outputs

	Desired Discrimination	Combined NN Output used for limits
$\begin{array}{c c} \text{only } t_L \\ \text{operator} \end{array}$	SM vs t_L	$\frac{P(t_L)}{P(t_L) + P(SM)}$
only t_R operator	$\mathrm{SM} \ \mathrm{vs} \ t_R$	$\frac{P(t_R)}{P(t_R) + P(SM)}$
including both t_L and t_R operators	EFT vs SM	$P(t_L) + P(t_R)$
including and t_R o	$t_L ext{ vs } t_R$	$\frac{P(t_L)}{P(t_L) + P(t_R)}$

One operator at a time: dedicated SM vs t_L/t_R outputs

Multiple operators: SM vs EFT and $t_L \, vs \, t_R$ outputs

Limits on individual operators Sensitivity study

Summary of the obtained (projected) 95% CL constraints on all relevant operators (one-by-one).

Factor ~2 improvement from fiducial phase space definition to EFT-enriched NN selection!

Contributions from multiple operators one LH and one RH top-quark operator

Operator	$t \bar{t} b \bar{b}$
$O_{QQ}^{1} = \frac{1}{2} \left(\bar{Q} \gamma_{\mu} Q \right) \left(\bar{Q} \gamma^{\mu} Q \right),$	✓
$O_{QQ}^8 = \frac{1}{2} \left(\bar{Q} \ \gamma_{\mu} \ T^A \ Q \right) \left(\bar{Q} \ \gamma^{\mu} \ T^A \ Q \right),$	✓
$O_{tb}^1 = (\bar{t} \ \gamma_\mu \ t) \left(\bar{b} \ \gamma_\mu \ b \right), \ \blacktriangleleft$	✓
$O_{tb}^{8} = \left(\bar{t} \ \gamma_{\mu} T^{A} \ t\right) \left(\bar{b} \ \gamma_{\mu} \ T^{A} \ b\right),$	✓
$O_{tt}^1 = (\bar{t} \ \gamma_{\mu} \ t) (\bar{t} \ \gamma_{\mu} \ t) ,$	
$O_{bb}^{1} = (\bar{b} \gamma_{\mu} b) (\bar{b} \gamma_{\mu} b),$	
$O_{Qt}^{1} = \left(\bar{Q} \ \gamma_{\mu} \ Q\right) \left(\bar{t} \ \gamma^{\mu} \ t\right),$	✓
$O_{Qt}^8 = \left(\bar{Q} \gamma_{\mu} T^A Q \right) \left(\bar{t} \gamma^{\mu} T^A t \right)$	✓
$O_{Qb}^1 = \left(\bar{Q} \ \gamma_{\mu} \ Q\right) \left(\bar{b} \ \gamma^{\mu} \ b\right),$	✓
$O_{Qb}^{8} = \left(\bar{Q} \ \gamma_{\mu} \ T^{A} \ Q\right) \left(\bar{b} \ \gamma^{\mu} \ T^{A} \ b\right),$	✓
$O_{QtQb}^{1} = (\bar{Q} \ t) \varepsilon (\bar{Q} \ b) ,$	✓
$O_{QtQb}^{8} = \left(\bar{Q} \ T^{A} \ t\right) \varepsilon \left(\bar{Q} \ T^{A} \ b\right).$	✓

<u>case study:</u> operators with right-handed top currents (t_R) or left-handed top currents (t_L)

Contributions from multiple operators one LH and one RH top-quark operator

2-dim phase space of NN outputs

x-axis: SM vs EFT $(t_L \text{ and } t_R)$

y-axis: t_L vs t_R

Case-study: Consider two non-zero Wilson coefficients: C_{tb}^1 and C_{Qb}^1

Case-study: Consider two non-zero Wilson coefficients: C_{tb}^1 and C_{Qb}^1

Case-study: Consider two non-zero Wilson coefficients: C_{tb}^1 and C_{Qb}^1

Case-study: Consider two non-zero Wilson coefficients: C_{tb}^1 and C_{Qb}^1

Case-study: Consider two non-zero Wilson coefficients: \mathcal{C}^1_{tb} and \mathcal{C}^1_{Qb}

Contributions from multiple operators SMEFT-hypothesis → observation?

Case-study: Consider two non-zero Wilson coefficients: C_{tb}^1 and C_{Qb}^1

 \rightarrow Assume an observation of EFT signal: $(C_{tb}^1, C_{0b}^1) = (5,3)$

Contributions from multiple operators SMEFT-hypothesis → observation?

Case-study: Consider two non-zero Wilson coefficients: C_{tb}^1 and C_{Qb}^1

 \rightarrow Assume an observation of EFT signal: $(C_{tb}^1, C_{0b}^1) = (5,3)$

Contributions from multiple operators SMEFT-hypothesis → observation?

Case-study: Consider two non-zero Wilson coefficients: \mathcal{C}^1_{tb} and \mathcal{C}^1_{Qb}

 \rightarrow Assume an observation of EFT signal: $(C_{tb}^1, C_{Qb}^1) = (5,3)$

Summary

ttbb is an indispensable component in a global fit of the top-quark interactions in the SMEFT at the LHC!

Large enough cross section to exploit differential information First direct constraints on a specific set of operators

Multi-class machine learning algorithms are a suitable tool for interpreting LHC data in this framework!

Intrinsically large SMEFT parameter space
High-multiplicity final states with inter-correlated information

Probing multiple SMEFT couplings simultaneously allow to pinpoint (or constrain) more efficiently the origin (absence) of a possible excess!

Backup

Introduction: ttbb production

I associate ttbb to:

- A Higgs boson measurements
- **B** SM measurements
- Theory calculations (simulations)
- **D** BSM searches
- Vote Results

- A. $t\bar{t}b\bar{b}$ is important background for $t\bar{t}H$ (H \rightarrow $b\bar{b}$). Recent discovery of this Higgs production mode *CMS: Phys. Rev. Lett.* 120 (2018), ATLAS: ArXiv:1411.5621
- B. ttbb (ttbb/ttjj) has therefore been measured by CMS and ATLAS (7, 8 & 13 TeV)

 CMS: Phys. Lett. B 746 (2015) 132, Phys. Lett. B 776 (2018) 355, ATLAS: Phys. Rev. D 89, 072012 (2014), Eur.Phys.J. C76 (2016), no.1, 11
- C. Difficult modeling (different mass scales, collinear splitting,...) → large effort from theory community example: T. Jezo et al. Eur. Phys. J. C78 (2018), no.6, 502
- D. ??? → Indispensable component in global fit of top-quark interactions!

Model building and generator software details

EFT validity

$$\frac{c_i}{\Lambda^2}E^2 \equiv C_i E^2 < C_i M_{cut}^2 \lesssim (4\pi)^2$$

Fix $\Lambda = 1$ TeV and express limits in [TeV-2]

All energy scales associated to the final state are imposed to be below M_{cut} . \rightarrow H_T (scalar sum of all visible final state objects) is a good example.

Strategy

Learning effective operators: Combine kinematic information of the ttbb final state into machine learning tools

- → Select EFT enriched phase space
- → Distinguish amongst EFT operators!

Cross section measurement in the fiducial detector volume

→ CMS ttbb/ttjj @ 13 TeV

Phys. Lett. B 776 (2018) 355

Selection of kinematic phase space to enrich in EFT contributions (using m_{4b}) \rightarrow reconstructed phase space needed!

Cross section in the fiducial detector volume

CSM Collaboration, Measurements of $t\bar{t}$ cross sections in association with b jets and inclusive jets and their ratio using dilepton final states in pp collisions at \sqrt{s} = 13 TeV, *Phys. Lett. B 776 (2018) 355*

Integrated luminosity = 2.3 fb⁻¹ Visible phase space definition: $\sigma_{t\bar{t}b\bar{b},CMS} = 88 \pm 12(stat.) \pm 29(syst.) \, \mathrm{fb}$

Projections for 300 fb-1:

scaled stat. unc. and fixed syst. unc. of 10% measured xsec = prediction of MadGraph

Cross section in the fiducial detector volume

CSM Collaboration, Measurements of $t\bar{t}$ cross sections in association with b jets and inclusive jets and their ratio using dilepton final states in pp collisions at \sqrt{s} = 13 TeV, *Phys. Lett. B 776 (2018) 355*

Integrated luminosity = 2.3 fb⁻¹ Visible phase space definition: $\sigma_{t\bar{t}b\bar{b},CMS} = 88 \pm 12(stat.) \pm 29(syst.) \, \mathrm{fb}$

Cross section in the fiducial detector volume

$$\sigma_{fit} = \sigma_{SM} \left(1 + p_1 \cdot C_i + p_2 \cdot C_i^2 \right)$$

Color singlet operators have small interference but larger squared order contributions

Color octet operators have larger interference (SM ~ gluon induced) but suppressed squared order contributions (color factor 2/9)

Tailoring the kinematical phase space

Step 1: move to the reconstructed phase space: Dileptonic decays of the top quarks

Step 2: identify quantities that are sensitive to the EFT operators (ΔR , M_{inv} , p_T , η) \rightarrow M_{4b}

Step 3: Make a selection on this quantity and derive the effective cross section dependence

Tailoring the kinematical phase space

Question: What cut to choose on M4b?

Answer: The one that optimizes the sensitivity!

- → increase relative population of EFT contributions
- → without blowing up statistical uncertainty on the SM measurement

Learning the effective operators *multiple operators*

The NN has indeed learned to distinguish amongst t_L and t_R operators!

Tailoring the kinematical phase space

Prospects for 300 fb⁻¹ after event reconstruction/selection and $M_{4b} > 1.1$ TeV

$$C_{Qb}^{1} \in [-3, +3] \text{ TeV}^{-2}$$

 $xsec: C_{Qb}^{1} \in [-6, +6] \text{ TeV}^{-2}$

$$C_{Qb}^{8} \in [-6.5, +7] \text{ TeV}^{-2}$$

 $xsec: C_{Qb}^{8} \in [-15, +10] \text{ TeV}^{-2}$

→ Improvement with a factor ~2!

Learning the effective operators one operator at a time

$$C^{8}_{Qb} \in [-5, +4.3] \text{ TeV}^{-2}$$

 $M_{4b}: C^{8}_{Qb} \in [-6.5, +7] \text{ TeV}^{-2}$

→ significant further improvement!

Learning the effective operators one operator at a time

Question: What cut to choose on the NN ouput?

Answer: The one that optimizes the sensitivity!

→ increase relative population of EFT contributions

→ without blowing up statistical uncertainty on the SM measurement

Backup: Neural Network training

- 18 inputs + RELU + 1 hidden layer (50 neurons) + RELU + Dropout (10%) + 3 outputs + SOFTMAX (sum=1)
- Mini-batches of size 128, training for 100 epochs
- Loss function: Categorical cross entropy
- Optimizer: Stochastic gradient descent
 - Initial learning rate = 0.005
 - \circ Decay = 10^{-6}
 - Nestrov momentum = 0.8

Variables used in the network

ΔR	m_{inv}	p_T
$\Delta R(\ell_1,\ell_2)$	$m_{inv}(\ell_1,\ell_2)$	$p_T(\ell_1)$
$\Delta R(b_1,b_2)$	$m_{inv}(b_1,b_2)$	$p_T(\ell_2)$
$\Delta R(b_1, \ell_2)$	$m_{inv}(b_1,\ell_2)$	$p_T(b_1)$
$\Delta R(b_2, \ell_1)$	$m_{inv}(b_2,\ell_1)$	$p_T(b_2)$
$\Delta R(add_1, add_2)$	$m_{inv}(add_1,add_2)$	$p_T(add_1)$
	$m_{inv}(b_1,b_2,add_1,add_2)$	$p_T(add_2)$
	$m_{inv}(\ell_1,\ell_2,b_1,b_2,add_1,add_2)$	

Outlook

- Fully marginalized limits when more precise measurements become available
- Method is generic and can be applied to other topologies / final states!
- Increased complexity of the network (Deep learning) or more advanced machine learning techniques may result in better sensitivity.
- Question for the future: How much can we push these algorithms to distinguish different EFT operators.
 - o We demonstrated a distinction between t_L and t_R operators
 - Distinguish color singlet operators from color octet ones would be possible if one includes interference effects during the training phase!
 (becomes dependent on the value of the Wilson coefficient
 - → Parametrized learning approach?)
 - Can you (ideally) distinguish each individual operator or are some of them indistinguishable?

2. ttbb in SMEFT: comparison to four top

	C. Zhang, Chin. Phys. C42(2018), no. 2 023104	CMS Collaboration CMS-PAS-TOP-17-019	N.P. Hartland et al., arXiv: 1901.05965	J.D'Hondt et al., JHEP 1811 (2018) 131
	4-top (300 fb ⁻¹) ($M_{\text{cut}} = 4 \text{ TeV}$)	4-top (35.8 fb^{-1}) (no M_{cut})		$t\bar{t}b\bar{b}$ (300 fb ⁻¹) ($M_{\rm cut} = 2 \text{ TeV}$)
C^1_{QQ}	[-2.8, 2.5]	[-2.2, 2.0]	-5.4, 5.2	[-2.1, 2.3]
C_{QQ}^8	[-8.4, 7.4]	n.a.	-21,16]	[-4.5,3.1]
C^1_{Qt}	[-2.2, 2.3]	$\left[-3.5, 3.5\right]$	[-4.9, 4.9]	[-2.1,2.3]
C_{Qt}^{8}	[-5.1, 4.1]	[-7.9, 6.6]	[-11, 8.7]	[-3.9, 3.8]

 $\mu_{4t} < 5.22$

 $\mu_{4t} < 1.87$