Measurements of differential $\mathrm{t}\overline{\mathrm{t}}$ and single top quark cross sections at CMS

O. Hindrichs On behalf of the CMS collaboration

University of Rochester

EPS-HEP2019 Ghent

11.07.2019

Overview

Differential $t\bar{t}$ /single top quark cross sections:

- Event variables (without top quark reconstruction)
- $\bullet~$ 1D, 2D differential cross sections of top quarks and $\mathrm{t}\bar{\mathrm{t}}$ pair
- differential cross sections of single top quark production and their charge ratio

These measurements provide:

- $\bullet\,$ Precision tests of the standard model top quark production. Different mechanisms for $t\bar{t}$ (QCD) and single top (EW)
- Tests of parton shower models
 →improved understanding of systematics in other measurements, e.g., top mass.
- PDF constraints, extractions of $m_{\rm t}$ and $\alpha_{\rm s}$.
- Improved understanding of $\mathrm{t}\bar{\mathrm{t}}$ background for BSM searches.
- Ο.

Measurement of kinematic event variables in e/μ +jets

 $36 \, {\rm fb}^{-1}$, 13 TeV, JHEP06 (2018) 002

Measurements of variables that do not need reconstruction of top quarks.

Observables defined using "stable" particles (>30 ns) within experimental acceptance \rightarrow avoid theory based extrapolations.

Objects use RIVET definitions see CERN-CMS-NOTE-2017-004. plugin available 11662081

• Selection: exactly 1 e/μ , at least 4 jets, at least 2 b-tagged jets.

 Shower scales have large impact on predictions. They also contribute as a dominant uncertainty in the measurement.

Sy	sten	natic	uncertainties

Relative uncertainty source (%)	Njets	$H_{\rm T}$
b tagging efficiency	3.2 - 4.1	3.6 - 4.7
Electron efficiency	1.2 - 1.4	1.3 - 1.6
Muon efficiency	1.7 - 1.9	1.6 - 2.2
JER	0.1 - 0.9	0.1 - 1.2
JES	1.8 - 12.6	5.7 - 16.8
QCD bkg cross section	0.1 - 0.5	0.1 - 0.7
QCD bkg shape	< 0.1	0.1 - 1.0
Single top quark cross section	1.1 - 1.7	1.1 - 3.5
V+jets cross section	0.7 - 1.1	0.6 - 3.4
PDF	0.2 - 1.0	0.1 - 0.8
Color reconnection (Gluon move)	0.1 - 2.9	0.1 - 4.1
Color reconnection (QCD-based)	0.1 - 2.3	0.1 - 4.4
Color reconnection (Early resonance decays)	0.3 - 3.9	0.1 - 7.1
Fragmentation	0.1 - 2.8	0.6 - 3.1
hdamp	0.8 - 4.9	0.3 - 4.1
Top quark mass	0.7 - 2.8	0.4 - 4.9
Peterson fragmentation model	0.3 - 3.9	1.6 - 3.9
Shower scales	3.1 - 8.0	3.6 - 8.3
B hadron decay semileptonic branching fraction	0.2 - 0.9	0.2 - 1.2
Top quark p_T	0.8 - 1.6	0.1 - 1.4
Underlying event tune	0.8 - 3.9	0.3 - 7.0
Simulated sample size	0.1 - 1.6	0.1 - 1.6
Additional interactions	0.1 - 0.4	0.1 - 0.8
Integrated luminosity	2.5 - 2.5	2.5 - 2.5
Total	10.8 - 16.5	11.2 - 19.4

Modeling uncertainties represent baseline for all recent CMS top

quark measurements.

Otto Hindrichs (UR)

$36 \, {\rm fb}^{-1}$, 13 TeV, JHEP06 (2018) 002

- e/μ p_T and S_T (p_T sum of all objects) are softer than predicted by most MCs.
- POWHEG+HERWIG++ and POWHEG/MG5(MLM)+PYTHIA8 predict higher jet multiplicity.

Differential $t\bar{t}$ cross sections

$e/\mu + jets channel$

 $36\,{\rm fb}^{-1},\,13\,{\rm TeV},\,{\sf PRD97}$ (2018) 112003

- Selection: exactly 1 e/μ, at least 4 jets, at least 2 b jets.
- Based on lepton and p_T^{miss} use mass constraints of m_t, m_W on leptonic side to obtain p_z-component of neutrino momentum, and correct b jet.
- Calculate likelihood λ according to 2D mass distributions of reconstructed m_t-m_W on hadronic side and compatibility of b jet on leptonic side.

dilepton channel

36 fb⁻¹, 13 TeV, JHEP02 (2019) 149

- Selection: ee, eμ, μμ at least 2 jets, at least 1 b jet.
- $\bullet~$ In same flavor channels exclude Z-Peak and require $p_{\rm T}^{\rm miss} > 40\,\text{GeV}$
- – Neutrino momenta calculated using m_t , m_W based on leptons and p_T^{miss} testing all permutation of jets (b jets preferred). Solution with lowest $M(t\bar{t})$ selected.

– Object momenta smeared according to resolution. 100 smeared events summed weighted according to expected $M(\ell\ell bb)$.

Otto Hindrichs (UR)

Parton and particle level

```
36 fb<sup>-1</sup>, 13 TeV, PRD97 (2018) 112003
```

Parton level

Extract properties of top quarks before their decays.

- available at NNLO QCD + NLO EW precision.
- in general not a well defined observable (WWbb production ...)

Particle level

Define proxy of top quark based on leptons, jets ... within experimental acceptance:

- \rightarrow clean definition of "top quark" observable.
- \rightarrow avoids theoretical extrapolations.

Events with exactly 1 isolated electron/muon, at least 4 jets (2 b jets) Sum momenta of all neutrinos p_N and find permutation of jets that minimizes:

$$\mathcal{K}^2 = (\mathcal{M}(p_N + p_\ell + p_{b_1}) - m_t)^2 + (\mathcal{M}(p_{j_1} + p_{j_2}) - m_W)^2 + (\mathcal{M}(p_{j_1} + p_{j_2} + p_{b_2}) - m_t)^2$$

Analysis uses RIVET for particle level level definitions. plugin available 11663958.

Otto Hindrichs (UR)

36 fb⁻¹, 13 TeV, PRD97 (2018) 112003, JHEP02 (2019) 149 Parton level

– Better $\textit{p}_{\rm T}(t)$ agreement with NNLO QCD + NLO EW [JHEP10 (2017) 186] calculation

– Softer $p_{T}(t)$ compared to POWHEG/MG5(FxFx)+PYTHIA8 and SHERPA at parton and particle levels.

- Reduced theoretical uncertainties at particle level.

Otto Hindrichs (UR)

Double-Differential $t\bar{t}$ cross sections measurements

36 fb⁻¹, 13 TeV, PRD97 (2018) 112003

Results unfolded in 2 dim. 35.8 fb⁻¹ (13 TeV) 35.8 fb⁻¹(13 TeV) \rightarrow correction for migrations $\overline{\sigma}_{norm} \frac{1}{d |y(t_{j})|} \frac{d^{2} \sigma}{d p_{j}(t_{j})} \left[GeV^{1} \right]_{2}$ 0 < |y(t_)| < 0.5 0.5 < |y(t_)| < 1 CMS e/u+iets ſGe√ CMS e/u+iets 10 parton level Data parton level Data among all bins. Svs ⊕ stat Svs ⊕ stat $\frac{1}{\sigma_{mrm}} \frac{d'\sigma}{d|y(t_{y})|dp_{T}(t_{y})|}$ Stat Stat CMS Simulation e/u+iets, parton level (13 TeV) POWHEG P8 POWHEG P8 10 Bins of |y(th) at detector level 0.045 --- POWHEG H++ POWHEG H++ $p_{\tau}(t_{i})$ 0.04 poplojun ···· MG5 P8 [FxFx] MG5 P8 [FxFx] 10 p_(t_) 0.03 peri 0.025 10 10 0.02 Theory Data Theory Data p_(t 0.015 1.3 0.01 8 p_(t 0.005 0.9 p₁(t₁) p_(t) 0 100 200 300 400 500 600 700 800 100 200 300 400 500 600 700 800 Bins of |y(t_)| at unfolded level p_(t_) [GeV] p_(t_) [GeV] 35.8 fb⁻¹ (13 TeV) 35.8 fb⁻¹(13 TeV) $\frac{1}{\sigma_{nom}} \frac{d^2 \sigma}{d|y(t_n)| dp_T(t_n)} [GeV^{\dagger}]$ c_1 c_2 c_1 10 CMS e/u+iets 1 < |v(t)| < 1.5CMS e/u+iets 1.5 < |v(t)| < 2.5 $\frac{1}{2_{nom}} \frac{d^2 \sigma}{d|y(t_p)| dp_{T}(t_p)} [GeV]$ Provide more details in parton level parton level Data Data Svs ⊕ stat Svs ⊕ stat corners of phase space Stat Stat 10-POWHEG P8 POWHEG P8 --- POWHEG H++ --- POWHEG H++ • $p_{\rm T}(t)$ softer in all rapidity ···· MG5 P8 [FxFx] ···· MG5 P8 [FxFx] 10 regions 10 In general: χ^2 -tests (see backup) Theory Data

taking into account theoretical uncertainties show reasonable compatibility between measurements and standard model.

p_(t_) [GeV]

0.8

100 200 300 400 500 600 700 800

Otto Hindrichs (UR)

Multi-Differential $\mathrm{t}\bar{\mathrm{t}}$ cross sections in the dilepton channel

 $36 \, {\rm fb}^{-1}$, 13 TeV, arXiv:1904.05237 sub. EPJC

• Uses same reconstruction as single differential measurement in dilepton channel.

• Results show similar behavior as in e/μ +jets: $p_{\rm T}({
m t})$ softer in all rapidity regions

36 fb⁻¹, 13 TeV, PRD97 (2018) 112003

 $p_{\rm T}(t)$ in bins of jet multiplicity ($p_{\rm T}({\rm jet}) > 30 \,{\rm GeV}$)

2 dim. unfolding in $p_{\rm T}(t)$ and number of additional jets.

- The slope disappears for events with higher jet multiplicity.
- HERWIG++ does not follow the trend of POWHEG+PYTHIA8, MG5(FxFx)+PYTHIA8, and SHERPA.

Interpretations of multi-Differential $t\bar{t}$ cross sections

 $36\,\mathrm{fb}^{-1},\,13\,\mathrm{TeV},\,\mathrm{arXiv}{:}1904.05237\,\,\mathrm{sub}.$ EPJC

Otto Hindrichs (UR)

- $m_{
 m t}$ and $lpha_{
 m s}$ are free parameters
- PDF parameterization as in HERAPDF2.0 using xFITTER
- comparisons with fixed order NLO cross section taking into account scale and PDF uncertainties.
- combined fit with HERA DIS data
- extracted: $m_{\rm t}^{\rm pole} = 170.5 \pm 0.8 \, {\rm GeV}$ $\alpha_{
 m s}(m_{
 m Z}) = 0.1135^{+0.0021}_{-0.0017}$

more about $m_t^{\rm pole}$ and α_s measurements in talk of Agostino De lorio "Recent top quark properties in CMS"

Single top quark differential cross sections

36 fb⁻¹, 13 TeV, CMS-PAS-TOP-17-023

t-channel single top production $\sigma_{\rm t} = 136 \, {\rm pb}, \, \sigma_{\rm \bar{t}} = 81 \, {\rm pb}$

Selection and reconstruction

- 1 isolated electron/muon + 2 jets, 1 b jet (signal region)
- Top reconstructed as momentum sum of b jet, e/μ , and neutrino (calculated from p_T^{miss} and e/μ using W mass constraint)

Signal extraction

- ML fit of four distributions: *M*_T(*W*) in 2j1b and 3j2b categories, two BDTs based on kinematic variables)
- BDT_{t-ch} signal vs background
- $BDT_{t\bar{t}/W}$ discrimination between $t\bar{t}$ and W backgrounds
- Uncertainties profiled in fit.
- The total log-likelihood is the sum over all bins of the differential measurement.

36 fb^{-1} , 13 TeV, CMS-PAS-TOP-17-023

- Extracted event yields are unfolded to parton and particle level
- The various predictions show reasonable agreement with the data: POWHEG 4FS, MADGRAPH 4FS/5FS.
- Charge ratios in agreement with expectations →test of proton composition.

Conclusion

Differential $\mathrm{t}\bar{\mathrm{t}}$ cross sections:

- All measurements are consistent with standard model expectations.
- A softer $p_T(t)$ spectrum is observed in all channels, but more precise calculations seem to improve the description.
- Different performances of parton shower models (PyTHIA8 and HERWIG++) for various measurements
- Significant reduction of uncertainties in gluon PDF at higher x

Differential single top quark cross sections:

- Well described by NLO MCs.
- Charge ratios in agreement with expectations

Backup

Parton level							
Distribution	χ^2/dof	<i>p</i> -value	χ^2/dof	<i>p</i> -value	χ^2/dof	<i>p</i> -value	
	POWHEC	+P8 with unc.	POWHEG+P8		NNLO Ç	CD+NLO EW	
$p_{\rm T}(t_{\rm high})$	16.4/12	0.173	27.4/12	< 0.01			
$p_{\rm T}(t_{\rm low})$	22.4/12	0.033	42.7/12	< 0.01			
$p_{\rm T}(t_{\rm h})$	16.4/12	0.175	24.0/12	0.020	5.13/12	0.953	
$ y(\mathbf{t}_{\mathbf{h}}) $	1.28/11	1.000	1.41/11	1.000	2.27/11	0.997	
$p_{\mathrm{T}}(t_{\ell})$	22.2/12	0.035	38.3/12	< 0.01	9.56/12	0.654	
$ y(t_\ell) $	2.04/11	0.998	2.42/11	0.996	8.14/11	0.700	
$M(t\bar{t})$	7.67/10	0.661	11.6/10	0.314	24.7/10	< 0.01	
$p_{\rm T}(t\bar{t})$	5.38/8	0.717	46.5/8	< 0.01			
$ y(t\bar{t}) $	3.98/10	0.948	5.66/10	0.843	9.26/10	0.507	
$ y(\mathbf{t}_{\mathbf{h}}) $ vs. $p_{\mathrm{T}}(\mathbf{t}_{\mathbf{h}})$	23.6/44	0.995	41.6/44	0.577			
$M(t\bar{t}) vs. y(t\bar{t}) $	20.6/35	0.975	35.0/35	0.469			
$p_{\rm T}({ m t_h})$ vs. $M({ m t\bar{t}})$	38.9/32	0.188	59.3/32	< 0.01			
	POW	HEG+H++	MG5_aMC@NLO+P8 FxFx			_	
$p_{\rm T}(t_{\rm high})$	6.60/12	0.883	16.3/12	0.180			
$p_{\rm T}(t_{\rm low})$	28.5/12	< 0.01	15.3/12	0.225			
$p_{\rm T}(t_{\rm h})$	5.09/12	0.955	11.0/12	0.530			
$ y(\mathbf{t}_{\mathbf{h}}) $	2.39/11	0.997	2.21/11	0.998			
$p_{\mathrm{T}}(\mathbf{t}_{\ell})$	6.55/12	0.886	17.4/12	0.136			
$ y(t_{\ell}) $	2.54/11	0.995	3.99/11	0.970			
$M(t\bar{t})$	4.16/10	0.940	12.1/10	0.275			
$p_{\rm T}(t\bar{t})$	55.0/8	< 0.01	26.8/8	< 0.01			
$ y(t\bar{t}) $	11.9/10	0.292	8.92/10	0.540			
$ y(\mathbf{t}_{\mathbf{h}}) $ vs. $p_{\mathrm{T}}(\mathbf{t}_{\mathbf{h}})$	57.9/44	0.077	40.2/44	0.634			
$M(t\bar{t})$ vs. $ y(t\bar{t}) $	40.8/35	0.229	58.7/35	< 0.01			
$p_{\rm T}(t_{\rm h})$ vs. $M(t\bar{t})$	93.0/32	< 0.01	166/32	< 0.01			

Distribution	χ^2/dof	<i>p</i> -value	χ^2/dof	<i>p</i> -value	χ^2/dof	<i>p</i> -value	
	POWHEG+P8 with unc.		SHERPA with unc.		powheg+P8		
$p_{\rm T}(t_{\rm h})$	15.9/12	0.197	7.21/12	0.844	29.5/12	< 0.01	
$ y(\mathbf{t}_{\mathbf{h}}) $	1.96/11	0.999	1.48/11	1.000	2.23/11	0.997	
$p_{\mathrm{T}}(\mathrm{t}_{\ell})$	27.0/12	< 0.01	22.3/12	0.034	80.2/12	< 0.01	
$ y(t_\ell) $	4.55/11	0.951	5.07/11	0.928	4.99/11	0.932	
$M(t\bar{t})$	5.83/10	0.829	2.40/10	0.992	9.07/10	0.525	
$p_{\mathrm{T}}(\mathrm{t}\mathrm{ar{t}})$	4.96/8	0.761	28.9/8	< 0.01	41.2/8	< 0.01	
$ y(t\bar{t}) $	5.93/10	0.821	6.63/10	0.760	8.61/10	0.570	
$ y(\mathbf{t}_{\mathbf{h}}) $ vs. $p_{\mathrm{T}}(\mathbf{t}_{\mathbf{h}})$	35.7/44	0.810	29.6/44	0.953	64.1/44	0.025	
$M(t\bar{t}) vs. y(t\bar{t}) $	25.9/35	0.867	24.2/35	0.914	56.2/35	0.013	
$p_{\rm T}({ m t_h})$ vs. $M({ m t\bar{t}})$	47.4/32	0.039	57.2/32	< 0.01	73.2/32	< 0.01	
	SHERPA		POWHEG+H++		MG5_aMC@NLO+P8 FxFx		
$p_{\rm T}({ m t_h})$	13.5/12	0.335	32.1/12	< 0.01	17.4/12	0.137	
$ y(\mathbf{t}_{\mathbf{h}}) $	2.32/11	0.997	4.89/11	0.936	3.16/11	0.988	
$p_{\mathrm{T}}(\mathbf{t}_{\ell})$	39.4/12	< 0.01	21.8/12	0.040	47.7/12	< 0.01	
$ y(t_\ell) $	5.54/11	0.902	4.04/11	0.969	7.22/11	0.781	
$M(t\bar{t})$	2.86/10	0.985	52.8/10	< 0.01	5.45/10	0.859	
$p_{\rm T}(t\bar{t})$	68.7/8	< 0.01	46.8/8	< 0.01	21.3/8	< 0.01	
$ y(t\bar{t}) $	12.1/10	0.276	18.6/10	0.046	8.13/10	0.616	
$ y(\mathbf{t}_{\mathbf{h}}) $ vs. $p_{\mathrm{T}}(\mathbf{t}_{\mathbf{h}})$	48.3/44	0.305	116/44	< 0.01	44.9/44	0.434	
$M(t\bar{t}) vs. y(t\bar{t}) $	41.5/35	0.208	219/35	< 0.01	55.7/35	0.014	
$p_{\rm T}({\rm t_h})$ vs. $M({ m t\bar t})$	66.5/32	< 0.01	152/32	< 0.01	48.9/32	0.028	

Particle level

Distribution	χ^2/dof	<i>p</i> -value	χ^2/dof	<i>p</i> -value	χ^2/dof	<i>p</i> -value
	POWHEG+P8 with unc.		SHERPA with unc.		powheg+P8	
Additional jets	1.52/6	0.958	27.3/6	< 0.01	10.1/6	0.121
Additional jets vs. $p_{\rm T}(t_{\rm h})$	35.1/44	0.830	64.6/44	0.023	71.6/44	< 0.01
Additional jets vs. $M(t\bar{t})$	27.5/36	0.845	68.9/36	< 0.01	38.8/36	0.345
Additional jets vs. $p_{\rm T}(t\bar{t})$	64.6/29	< 0.01	181/29	< 0.01	175/29	< 0.01
$p_{\rm T}({\rm jet})$	70.2/47	0.016	374/47	< 0.01	133/47	< 0.01
$ \eta(\text{jet}) $	120/70	< 0.01	174/70	< 0.01	171/70	< 0.01
$\Delta R_{\rm jt}$	60.9/66	0.655	215/66	< 0.01	168/66	< 0.01
$\Delta R_{\rm t}$	64.0/62	0.405	229/62	< 0.01	121/62	< 0.01
	SHERPA		powheg+H++		MG5_aMC@NLO+P8 FxFx	
Additional jets	63.0/6	< 0.01	34.1/6	< 0.01	11.1/6	0.086
Additional jets vs. $p_{\rm T}(t_{\rm h})$	88.5/44	< 0.01	230/44	< 0.01	53.4/44	0.156
Additional jets vs. $M(t\bar{t})$	112/36	< 0.01	300/36	< 0.01	55.1/36	0.022
Additional jets vs. $p_{\rm T}(t\bar{t})$	285/29	< 0.01	223/29	< 0.01	122/29	< 0.01
$p_{\rm T}({\rm jet})$	768/47	< 0.01	624/47	< 0.01	111/47	< 0.01
$ \eta(\text{jet}) $	214/70	< 0.01	259/70	< 0.01	133/70	< 0.01
ΔR_{it}	334/66	< 0.01	959/66	< 0.01	67.0/66	0.441
ΔR_{t}	316/62	< 0.01	483/62	< 0.01	78.9/62	0.073

With additional jets

Parton level

- e/µ+jets and dilepton channels show similar deviations from predictions
- Softer $M(t\bar{t})$ compared to POWHEG/MG5(FxFx)+PYTHIA8 and SHERPA.
- POWHEG+HERWIG++ too soft at particle level, while better at parton level.
- In general: χ²-tests (see backup) considering theory uncertainties (POWHEG+PYTHIA8 and SHERPA) show reasonable compatibility between measurements and SM predictions.

Normalized and absolute cross sections for all distributions available.

Otto Hindrichs (UR)