Measurement of ttbar with additional jets with the ATLAS detector

Timothée Theveneaux-Pelzer

on behalf of the ATLAS collaboration

DESY - Zeuthen

Friday, July 12th 2019

Introduction

- Measurement of tt
 +jets is an important test of QCD
- Especially with additional HF-jets : theoretical challenge due to b-quark mass
 - \rightarrow QCD at very different energy scales
- Background for several interesting physics processes

 \rightarrow (B)SM 4-tops, $t\bar{t}H(\rightarrow b\bar{b})$, $H^+ \rightarrow t\bar{b}$, etc.

- For better accuracy : need NLO multileg generators
 - ightarrow additional light or heavy quarks in the Matrix Element
 - ightarrow more challenging optimisation than NLO+PS setups
- ATLAS measured observables sensitive to additional radiations in tt with 13 TeV data
 - \rightarrow jet activity in $t\bar{t}$ events 3.2fb⁻¹, $e\mu$ channel Eur. Phys. J. C **77** (2017) 220
 - \rightarrow tt cross-sections with additional jets 3.2fb⁻¹, ℓ +jets channel JHEP **10** (2018) 159
 - $\rightarrow t\bar{t}$ cross-sections with additional HF-jets 36.1fb⁻¹, $e\mu$ channel JHEP 04 (2019) 046

Jet activity in $t\bar{t}$ events

Eur. Phys. J. C 77 (2017) 220

- Selecting $t\bar{t}$ events in $e\mu$ topology : $1e+1\mu$, opposite charge, ≥ 2 jets, $\geq 2b$ -tag
 - \rightarrow signal modelled using Powheg+Pythia6
- Very pure $t\bar{t}$ sample : S/B > 95%
 - \rightarrow irreducible backgrounds estimated with MC samples
 - ightarrow fake prompt leptons estimated on data with same-sign leptons events
- Jet-related observables unfolded at particle level, and accounting for pile-up jets
- Main systematics : JES/JER, signal modelling

Jet activity in $t\bar{t}$ events : additional jets multiplicity Eur. Phys. J. C 77 (2017) 220

Jet activity in $t\bar{t}$ events : jet kinematics

Eur. Phys. J. C 77 (2017) 220

additional radiations in the PS

- Leading $b : \simeq$ from top
 - → most MC compatible with data
 - different slopes
- Leading add. jet : ~ not from top
 - \rightarrow worse modelling in some MC, e.g. aMC@NLO

Powheg+Pythia6 (RadH

5/13

Jet activity in $t\bar{t}$ events : gap fractions

Eur. Phys. J. C 77 (2017) 220

- Rapidity gap fraction Q₀: event fraction w/o additional radiation above a threshold
 - → usefull indication of additional radiation kinematics
- Better modelling by Powheg+Py8 (A14) than by Powheg+Py6 (Perugia)

T. Theveneaux-Pelzer DESY - Zeuthen

ÔESÝ.

tt with additional jets

JHEP 10 (2018) 159

- Reconstruction of $t\bar{t}$ kinematics in ℓ +jets channel
 - ightarrow ~ 1*e* or $\mu,~N_{jets} \geq$ 4, $N_{b-jets} \geq$ 2
 - ightarrow see presentation by M. Faucci Giannelli for details
- tt kinematics measured for different Nadd. jets
 - $\rightarrow~$ observables measured for $N_{add.~jets}$ =0,1, or ${\geq}2$
- Some observables are senstitive to additional radiation
 - $ightarrow\,$ e.g. ${\rm p_T}(t\overline{t}),$ here shown for \ge 2 add. jets

- Clear trend observed in normalised distribution
 - → too hard spectra in Powheg+Pythia6/8 MC

tt with additional b-jets

JHEP 04 (2019) 046

- Measurement of additional *b*-jets in $t\bar{t}$ events, both in ℓ +jets and $e\mu$ channels
 - $\rightarrow~\textit{e}\mu$: purer but low statistics at high $N_{\textit{b-jets}}$
- Cross-sections in fiducial volumes with \geq 1 or \geq 2 additional *b*-jets
 - ightarrow differential : in both volumes for ℓ +jets, in \ge 1 add. *b*-jets only for *e* μ
- Unfolded data compared to MC predictions
 - \rightarrow subtraction of $t\bar{t}V$ and $t\bar{t}H$ from unfolded $t\bar{t}+b\bar{b}$ spectrum
 - \rightarrow comparison MC predictions either $t\bar{t}$ NLO+PS, or $t\bar{t} + b\bar{b}$ NLO
- Dominant systematics : signal modelling, b-tagging

tt with additional b-jets : fiducial cross-sections JHEP 04 (2019) 046

- Measured ttb and ttbb cross-sections compared to ttbb MC predictions
 - \rightarrow Sherpa (4FS), Powheg+Py8 (4FS), PowHel+Py8 (4 or 5FS)
 - → PowHel+Py8 doesn't include spin correlations in top decays
- Deviations depend on the considered fiducial volume

$t\bar{t}$ with additional *b*-jets : *b*-jets kinematics

JHEP 04 (2019) 046

- Normalised differential cross-sections vs. 3rd b-jet pT
 - \rightarrow proxy to leading "additional" *b*-jet
- Most predictions are in agrement with unfolded data
 - \rightarrow discrepancy for PowHel+Py8 (5FS)

DESY.

$t\bar{t}$ with additional *b*-jets : $b\bar{b}$ angular separation

JHEP 04 (2019) 046

- Normalised differential cross-sections vs. $\Delta R_{bb}^{\Delta \min}$
 - \rightarrow proxy for ΔR between two additional *b*-jets good modelling needed for $t\bar{t}H(\rightarrow b\bar{b})!$
- Most predictions are in agreement with unfolded data
 - \rightarrow discrepancy for PowHel+Py8 (5FS)

JESY.

tt with additional b-jets : bb kinematics

JHEP 04 (2019) 046

- Normalised differential cross-sections vs. pT of two closest b-jets
 - \rightarrow with \geq 1(2) additional *b*-jets in ℓ +jets (*e* μ) channel
- Most predictions are in agreement with unfolded data
 - \rightarrow discrepancy for PowHel+Py8 $t\bar{t} + b\bar{b}$ (5FS), aMC@NLO+Py8 $t\bar{t}$

DESY.

Conclusion

- Several $t\bar{t}$ +jets observables measured by ATLAS at 13 TeV
- Currently : results with up to 36.1 fb⁻¹ more than 100 fb⁻¹ to come
- Measurements of additional jets and *b*-jets at particle level
- Signal modelling uncertainties large with current MC
- Iterative improvement between measurements and MC optimisation
- All these unfolded distributions and more ! made available as Rivet routines

