

EPS HEP 2019 Ghent

Ghent, Belgium July 13, 2019

Electroweak physics in multiboson final states at CMS

Chia Ming, Kuo National Central University, Taiwan

Why do we study multiboson physics ?

electroweak gauge bosons carry weak charge
 → interaction vertices with three bosons (triple
 gauge coupling, TGC) or four bosons (quartic
 gauge coupling, QGC) are predicted in SM

- the measurements of multiboson production provide
 - an important test of SM
 - an indirect search for new physics
 - a detailed understanding of the background processes to the search of new physics

The measurements

much higher statistics
 → triboson, vector boson scattering

key process for exploring the SM nature of EWSB

Interpretation of the results

- values of TGCs and QGCs are fully fixed in the SM
- new phenomena can induce changes in TGCs/QGCs so that cross sections and kinematics deviate from SM prediction
 →test SM gauge structure
- anomalous couplings are constrained in the effective field theory (model independent) framework

$$L_{EFT} = L_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} O_i + \sum_{j} \frac{f_j}{\Lambda^4} O_j + \dots$$

- the gauge invariant operators O_i, O_i are built from SM fields
- the coefficients c_i, f_j are unknown and treated as free parameters to be determined from data
- can also be used to investigate various BSM models such as H[±], H^{±±}...

EPS HEP 2019 Ghent

What will be covered

	Production mode	Final state	Dataset (13 TeV)	Documents
	WZ	IIIv	35.9/fb	JHEP 04 (2019) 122
Diboson	ZZ	IIII IIII + jets	101.2/fb 35.9/fb	CMS SMP-19-001 PLB 789 (2019) 19
	WW/WZ	l∨jj	35.9/fb	CMS SMP-18-008
Triboson	WWW	III, SS II+jj	35.9/fb	CMS SMP-17-013 arXiv:1905.04246
	WW	SS II	35.9/fb	PRL 120 (2018) 081801
	WZ	IIIv	35.9/fb	CMS SMP-18-001 arXiv:1901.04060
VBS	ZZ		35.9/fb	PLB 774 (2017) 682
	WW/WZ/ZZ	l∨jj, IIjj	35.9/fb	CMS SMP-18-006 arXiv:1905.07445
	Ζγ	llγ	35.9/fb	CMS SMP-18-007
DPS	WW	SS µµ, eµ	77.4/fb	CMS SMP-18-015

EPS HEP 2019 Ghent

$WZ \rightarrow III_V$

- only multiboson process directly sensitive to the WWZ coupling
- $Z \rightarrow ee/\mu\mu, W \rightarrow ev/\mu\nu$

NNI O

- both of inclusive and differential cross sections are measured with increased precision wrt previous results
- $\sigma(W^+Z)/\sigma(W^-Z)$ is computed as well

 $40,00\pm1,10,1$

 $\sigma^{tot} = 48.09^{+1.00}_{-0.96} (stat)^{+0.44}_{-0.37} (theo)^{+2.39}_{-2.17} (syst) \pm 1.39 (lumi) pb$

4 = 00 + 221

$$\sigma^{NNLO} = 49.98^{+1.10}_{-1.00} \ pb \ \sigma^{NLO} = 45.09^{+2.21}_{-1.76} \ pb \ \sigma^{NNLO} \approx 1.1 \times \sigma^{NLO}$$

6

NIO

NNI O

$WZ \rightarrow IIV$: differential cross sections

- p_T of the leading jet→a probe of the boost of the WZ system recoiling against ISR
- the differential cross sections are also measured for each sign of the W boson charge
- measurements and predictions agree well

EPS HEP 2019 Ghent

U

d

W

W

$WZ \rightarrow IIV: aTGC$

- M_{WZ} is used to derive the limits for contributions from dim-6 operators on aTGC
- WWZTGC can be indecently checked with VBF Z production [EPJC 78 (2018) 589]

 C_W/Λ^2

 C_{WWW}/Λ^2

 C_b/Λ^2

VBFZ

Exp.

[-12.6, 14.7]

Inclusive WZ

Obs.

[-4.1, 1.1]

Exp.

[-3.3, 2.0]

[-1.8, 1.9]

[-130, 170]

8

Obs.

[-8.4, 10.1]

[-2.6, 2.6]

20

$\sigma^{NNLO\ QCD} = 16.2^{+0.6}_{-0.4}\ pb$ $\sigma^{NLO\ QCD} = 15.0^{+0.7}_{-0.6}(PDF) \pm 0.2(scale)\ pb$ 14 √s (TeV)

CMS 4^{*ℓ*} (137 fb⁻¹) Preliminary

Year	Total cross section, pb				
2016	$17.5^{+0.6}_{-0.5}$ (stat) ± 0.6 (syst) ± 0.4 (theo) ± 0.4 (lumi)				
2017	16.8 ± 0.5 (stat) ± 0.5 (syst) ± 0.4 (theo) ± 0.4 (lumi)				
2018	16.8 ± 0.4 (stat) ± 0.6 (syst) ± 0.4 (theo) ± 0.4 (lumi)				
Combined	17.1 ± 0.3 (stat) ± 0.4 (syst) ± 0.4 (theo) ± 0.3 (lumi)				

7 77 a q $\sim\sim$ q Maj

- non-resonant ZZ \rightarrow IIII production with 60 < m_{II} < 120 GeV
- 3 final states : eeee, $\mu\mu\mu\mu$, ee $\mu\mu$

Z

Z

ZZ→IIII + jets

- $\sigma(ZZ \rightarrow IIII)$ on the jet multiplicity and the kinematic properties of two p_T -leading jets
- provide an important test of the QCD corrections to ZZ production

EPS HEP 2019 Ghent

$WW/WZ \rightarrow hv + jet$

	Electron channel		Muon o	channel
	WW	WZ	WW	WZ
W+jets	1618 ± 66	1418 ± 57	2529 ± 99	2138 ± 83
tī	600 ± 63	526 ± 56	1040 ± 106	938 ± 96
Single top quark	145 ± 16	97 ± 10	264 ± 25	185 ± 18
Diboson (SM)	144 ± 52	122 ± 52	265 ± 88	200 ± 79
Total expected (SM)	2507 ± 106	2163 ± 96	4098 ± 172	3461 ± 151
Diboson $(c_{WWW}/\Lambda^2 = 3.6 \text{ TeV}^{-2})$	193 ± 15	185 ± 15	334 ± 26	287 ± 22
Diboson $(c_W/\Lambda^2 = 4.5 \text{TeV}^{-2})$	163 ± 14	154 ± 15	283 ± 23	237 ± 21
Diboson $(c_{\rm B}/\Lambda^2 = 20 {\rm TeV}^{-2})$	188 ± 21	144 ± 14	322 ± 33	221 ± 20
Data	2456	2235	3996	3572

a single large-radius massive jet

- offers a good balance between efficiency at high p_T^V and purity
- improve the sensitivity to BSM signals
- major backgrounds:W+jets and tt
- WW and WZ final states are distinguished with the invariant mass of the jet and the jet substructure techniques so that different aTGC contributions (WWγ and WWZ) are discriminated

$WW/WZ \rightarrow lv + jet: aTGC$

- focus on possible additional contributions by dim-6 operators
- limits are set with the mass of the resulting jet and M_{WV}
- most strictest bounds from direct measurements so far

Parametrization	aTGC	Expected limit	Observed limit	Run I limit
	$c_{\rm WWW}/\Lambda^2~({\rm TeV}^{-2})$	[-1.44, 1.47]	[-1.58, 1.59]	[-2.7, 2.7]
EFT	$c_{\rm W}/\Lambda^2~({\rm TeV}^{-2})$	[-2.45, 2.08]	[-2.00, 2.65]	[-2.0, 5.7]
	$c_{\rm B}/\Lambda^2~({\rm TeV}^{-2})$	[-8.38, 8.06]	[-8.78, 8.54]	[-14, 17]

EPS HEP 2019 Ghent

 further divided into 9 signal regions depending on lepton flavor and dijet

mass, and lepton flavor and charge

focus on aQGCs as the constraints on

aTGCs cannot be improved

production (216 \pm 9 fb @ NLO) and

WH \rightarrow WWW* $\rightarrow \sigma^{\text{tot}} = 509 \pm 13 \text{ fb}$

search for non-resonant WWW

look into 2 SS leptons and 3I category

W

WWW: inclusive cross section

• significance : 0.6 σ (obs.) and 1.78 σ (exp.), assuming SM rate

•
$$\mu^{observed} = 0.34^{+0.62}_{-0.34}$$
 $\sigma^{measured} = 173^{+326}_{-173} fb$

2019/7/13

EPS HEP 2019 Ghent

WWW: aQGC & limits on BSM physics

- focus on f_j of the dim-8 operators
- limits on aQGC are set with S_T, scalar sum of p_T of final state particles

Anomalous coupling	Allowed range (TeV^{-4})		
	Expected	Observed	
$f_{T,0}/\Lambda^4$	[-1.3, 1.3]	[-1.2, 1.2]	
$f_{\mathrm{T,1}}/\Lambda^4$	[-3.7, 3.7]	[-3.3, 3.3]	
$f_{\mathrm{T,2}}/\Lambda^4$	[-3.0, 2.9]	[-2.7, 2.6]	

- limits on the production of axionlike particles (a→WW) in association with a W
- 200 < m_a < 480 GeV are excluded with $1/f_a = 5 \ TeV^{-1}$

- the largest ratio of EW to QCD production comparing to other VBS processes
- signal : electroweak production of two
 SS charged leptons (e[±]e[±], e[±]μ[±], μ[±]μ[±]) and two jets with a large Δη_{jj} and m_{jj}
- major backgrounds : non-prompt lepton events,WZ

Data	201
Signal + total background	205 ± 13
Signal	66.9 ± 2.4
Total background	138 ± 13
Nonprompt	88 ± 13
WZ	25.1 ± 1.1
QCD WW	4.8 ± 0.4
$W\gamma$	8.3 ± 1.6
Triboson	5.8 ± 0.8
Wrong sign	5.2 ± 1.1

WWVBS: first observation

• significance : 5.5 σ (obs.); 5.7 σ (exp.) \rightarrow first observation of EW W[±]W[±]jj

- $\sigma_{fid} = 3.83 \pm 0.66(stat) \pm 0.35(syst) fb$ (statistically dominated)
- $\sigma^{LO} = 4.25 \pm 0.27(scale + PDF) fb$

EPS HEP 2019 Ghent

WWVBS: aQGC & limits on H^{±±}

- focus on dim-8 operators
- limits are set with m_{II} and improved by a factor up to 6 w.r.t. previous results

•	limits on $\sigma \times BF$ for VBF
	production of H ^{±±}

	Observed limits	Expected limits	Previously observed limits
	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})
f_{S0}/Λ^4	[-7.7,7.7]	[-7.0, 7.2]	[-38, 40]
f_{S1}/Λ^4	[-21.6, 21.8]	[-19.9, 20.2]	[-118, 120]
f_{M0}/Λ^4	[-6.0, 5.9]	[-5.6, 5.5]	[-4.6, 4.6]
f_{M1}/Λ^4	[-8.7, 9.1]	[-7.9, 8.5]	[-17, 17]
f_{M6}/Λ^4	[-11.9, 11.8]	[-11.1, 11.0]	[-65,63]
f_{M7}/Λ^4	[-13.3, 12.9]	[-12.4, 11.8]	[-70,66]
f_{T0}/Λ^4	[-0.62, 0.65]	[-0.58, 0.61]	[-0.46, 0.44]
f_{T1}/Λ^4	[-0.28, 0.31]	[-0.26, 0.29]	[-0.61, 0.61]
f_{T2}/Λ^4	[-0.89, 1.02]	[-0.80, 0.95]	[-1.2, 1.2]

WZVBS

Process	μμμ	μµe	eeµ	eee	Total yield
QCD WZ	13.5 ± 0.8	9.1 ± 0.5	6.8 ± 0.4	4.6 ± 0.3	34.1 ± 1.1
t+V/VVV	5.6 ± 0.4	3.1 ± 0.2	2.5 ± 0.2	1.7 ± 0.1	12.9 ± 0.5
Nonprompt	5.2 ± 2.0	2.4 ± 0.9	1.5 ± 0.6	0.7 ± 0.3	9.9 ± 2.3
VV	0.8 ± 0.1	1.6 ± 0.2	0.4 ± 0.0	0.7 ± 0.1	3.5 ± 0.2
$Z\gamma$	< 0.1	2.1 ± 0.8	< 0.1	< 0.1	2.1 ± 0.8
Pred. background	25.2 ± 2.1	18.3 ± 1.6	11.2 ± 0.8	7.7 ± 0.5	62.4 ± 2.8
EW WZ signal	6.0 ± 1.2	4.2 ± 0.8	2.9 ± 0.6	2.1 ± 0.4	15.1 ± 1.6
Data	38	15	12	10	75

Electroweak-induced

QCD-induced production

- WZ \rightarrow IIIv (I = e, μ), 2 jets with a large $\Delta \eta_{ij}$ and m_{ij}
- less clean signature than W[±]W[±]jj
- major backgrounds: QCD-induced production, t+V/VVV

WZVBS: inclusive cross sections

- $\sigma_{WZjj}^{LO} = 3.27^{+0.39}_{-0.32} (scale) \pm 0.15 (PDF) fb$
- $\mu^{EW} = 0.82^{+0.51}_{-0.43}$
- significance of EW WZjj : 2.2 σ (obs.) 2.5 σ (exp.)

WZVBS: aQGC & limits on H[±]

- aQGCs are constrained with m_T(WZ)
- limits on $\sigma \times BF$ for VBF production of H[±]

[-1.49, 1.85]

fields

[-1.78, 2.00]

 f_{T2}/Λ^4

ZZVBS (1/2)

CMS

- fully leptonic final state $ZZ \rightarrow IIII$ (I = e, μ)
- low σ, small BR, large irreducible QCD background → all final state particles can be reconstructed → favorable for EWSB study
- clean leptonic final state → small reducible background
- provide the precise understanding of the scattering energy
- the spin correlations of reconstructed fermions permit the extraction of the longitudinal contribution to VBS

ZZVBS (2/2)

- BDT used to separate EW- and QCD-induced production
- $\sigma_{ZZjj}^{fid} = 0.40^{+0.21}_{-0.16} (stat) \, {}^{+0.13}_{-0.09} (syst) \, fb$
- $\sigma_{ZZjj}^{LO} = 0.29^{+0.02}_{-0.03} fb$
- significance of EW ZZjj : 2.7σ (obs.) 1.6 σ (exp.)

EPS HEP 2019 Ghent

- M_{ZZ} is used to constrain the aQGCs
- the results are statistically limited so far

Coupling	Exp. lower	Exp. upper	Obs. lower	Obs. upper
$f_{\rm T0}/\Lambda^4$	-0.53	0.51	-0.46	0.44
$f_{\rm T1}/\Lambda^4$	-0.72	0.71	-0.61	0.61
$f_{\rm T2}/\Lambda^4$	-1.4	1.4	-1.2	1.2
$f_{\rm T8}/\Lambda^4$	-0.99	0.99	-0.84	0.84
$f_{\rm T9}/\Lambda^4$	-2.1	2.1	-1.8	1.8

involve U(1) fields only accessible via the final state of neutral gauge bosons

WV, ZVVBS (V=W,Z)

Powers work barriers

- WV \rightarrow IV + a large radius jet
- ZV→II + a large radius jet
- pT^{jet} > 200 GeV
- sensitivity is enhanced by requiring tight dijet selections and centrality of leptonically decayed W/Z
- major backgrounds : V+jets and tt (for WV)
- not sensitive to SM yet

Final state	WV	ZV
Data	347	47
V+jets	196 ± 14	42.6 ± 6.1
Top quark	113 ± 15	0.14 ± 0.04
QCD VV	27 ± 8	5.5 ± 1.9
SM EW VV	16 ± 2	2.0 ± 0.4
Total bkg.	352 ± 19	50.3 ± 5.8
	4	

WV, ZVVBS (V=W,Z): aQGC & limits on H[±], H^{±±}

- M_{WV} and M_{ZV} are used to constrain aQGCs
- stringent limits are set and improve the results with fully leptonic final state by factors of up to seven
- limits on VBF produced charged Higgs boson extend the previous CMS results to higher mass region

	Observed (WV)	Expected (WV)	Observed (ZV)	Expected (ZV)	Observed	Expected
	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})
$f_{\rm S0}/\Lambda^4$	[-2.7, 2.7]	[-4.2, 4.2]	[-40, 40]	[-31, 31]	[-2.7, 2.7]	[-4.2, 4.2]
$f_{\rm S1}/\Lambda^4$	[-3.3, 3.4]	[-5.2, 5.2]	[-32, 32]	[-24, 24]	[-3.4, 3.4]	[-5.2, 5.2]
$f_{\rm M0}/\Lambda^4$	[-0.69, 0.69]	[-1.0, 1.0]	[-7.5, 7.5]	[-5.3, 5.3]	[-0.69, 0.70]	[-1.0, 1.0]
$f_{\rm M1}/\Lambda^4$	[-2.0, 2.0]	[-3.0, 3.0]	[-22, 23]	[-16, 16]	[-2, 0, 2.1]	[-3.0, 3.0]
$f_{\rm M6}/\Lambda^4$	[-1.4, 1.4]	[-2.0, 2.0]	[-15, 15]	[-11, 11]	[-1.3, 1.3]	[-1.4, 1.4]
$f_{\rm M7}/\Lambda^4$	[-3.4, 3.4]	[-5.1, 5.1]	[-35, 36]	[-25, 26]	[-3.4, 3.4]	[-5.1, 5.1]
$f_{\rm T0}/\Lambda^4$	[-0.12, 0.11]	[-0.17, 0.16]	[-1.4, 1.4]	[-1.0, 1.0]	[-0.12, 0.11]	[-0.17, 0.16]
$f_{\rm T1}/\Lambda^4$	[-0.12, 0.13]	[-0.18, 0.18]	[-1.5, 1.5]	[-1.0, 1.0]	[-0.12, 0.13]	[-0.18, 0.18]
$f_{\rm T2}/\Lambda^4$	[-0.28, 0.28]	[-0.41, 0.41]	[-3.4, 3.4]	[-2.4, 2.4]	[-0.28, 0.28]	[-0.41, 0.41]

EPS HEP 2019 Ghent

ZYVBS

- Zγ→IIγ (I=e,μ), p^T > 20 GeV
- major backgrounds : QCD
 Zγjj and Z+jets (fake photon) events

Run-l	ATLAS	CMS
obs.	2.0σ	3.0σ
exp.	1.8σ	2.1σ

	muon channel	electron channel
Nonprompt photon	47.6 ± 4.5	39.3 ± 4.0
Other background	7.4 ± 1.4	2.7 ± 0.8
QCD Zγjj	62.9 ± 3.1	49.6 ± 2.7
EW $Z\gamma jj$	36.5 ± 0.7	25.4 ± 0.6
Total background	117.9 ± 5.6	91.6 ± 4.8
Data	172 ± 13	113 ± 11

ZYVBS: inclusive cross sections

- $\sigma_{EW}^{fid} = 3.20 \pm 1.00(stat) \pm 0.57(syst) \pm 0.07(lumi) fb \ (\mu^{EW} = 0.64^{+0.23}_{-0.21})$
- significance : 3.9σ (obs.) 5.2σ (exp.) [2016]
- significance : 4.7σ (obs.) 5.5σ (exp.) [Run1+2016]
- $\sigma_{EW+QCD}^{fid} = 15.07 \pm 1.15(stat) \pm 2.06(syst) \pm 0.44(lumi) fb \ (\mu_{EW+QCD} = 0.96^{+0.15}_{-0.13})$

EPS HEP 2019 Ghent

ZY VBS: aQGC

- limits on aQGCs are extracted with M_{ZY}
- the results are competitive or more stringent than previous constraints

			Observed Limits (TeV $^{-4}$)	Expected Limits (TeV^{-4})
C	CMS Preliminary	35.9 fb ⁻¹ (13 TeV)	$-19.3 < F_{\rm M,0}/\Lambda^4 < 20.2$	$-15.0 < F_{\rm M,0}/\Lambda^4 < 15.1$
ia 10 ²			$-47.8 < F_{\rm M,1} / \Lambda^4 < 46.9$	$-30.1 < F_{\rm M,1} / \Lambda^4 < 30.0$
ents	Ē		$-8.16 < F_{\rm M,2} / \Lambda^4 < 8.04$	$-6.09 < F_{\rm M,2} / \Lambda^4 < 6.06$
e N			$-20.9 < F_{M,3} / \Lambda^4 < 21.1$	$-13.2 < F_{\rm M,3}/\Lambda^4 < 13.3$
			$-15.2 < F_{M,4} / \Lambda^4 < 15.8$	$-11.7 < F_{\rm M,4} / \Lambda^4 < 11.7$
10)		$-24.9 < F_{\rm M,5} / \Lambda^4 < 24.4$	$-19.1 < F_{\rm M,5} / \Lambda^4 < 18.2$
	Ē		$-38.6 < F_{ m M,6} / \Lambda^4 < 40.5$	$-30.0 < F_{\rm M,6} / \Lambda^4 < 30.1$
			$-60.8 < F_{\rm M,7} / \Lambda^4 < 62.6$	$-46.1 < F_{\rm M,7} / \Lambda^4 < 46.3$
-			$-0.74 < F_{ m T,0}/\Lambda^4 < 0.69$	$-0.56 < F_{\mathrm{T,0}} / \Lambda^4 < 0.51$
	Ē		$-1.16 < F_{\mathrm{T,1}} / \Lambda^4 < 1.15$	$-0.73 < F_{\mathrm{T,1}} / \Lambda^4 < 0.72$
	Ę		$-1.96 < F_{\mathrm{T,2}} / \Lambda^4 < 1.85$	$-1.48 < F_{\mathrm{T,2}} / \Lambda^4 < 1.37$
			$-0.70 < F_{ m T,5}/\Lambda^4 < 0.74$	$-0.51 < F_{\mathrm{T},5} / \Lambda^4 < 0.57$
10			$-1.64 < F_{ m T,6}/\Lambda^4 < 1.67$	$-1.23 < F_{T,6} / \Lambda^4 < 1.26$
			$-2.59 < F_{ m T,7}/\Lambda^4 < 2.80$	$-1.91 < F_{\mathrm{T,7}}/\Lambda^4 < 2.12$
	200 400	600 800 1000 1200 1400 M [GeV]	$-0.47 < F_{\rm T,8}/\Lambda^4 < 0.47$	$-0.36 < F_{\mathrm{T,8}} / \Lambda^4 < 0.36$
			$-1.26 < F_{T9} / \Lambda^4 < 1.27$	$-0.95 < F_{T,9} / \Lambda^4 < 0.95$

- useful information on the parton distribution inside the proton in the transverse direction and on the correlations between them
- $W^{\pm}W^{\pm}$ in $\mu^{+}\mu^{+}, \mu^{-}\mu^{-}, e^{+}\mu^{+}, e^{-}\mu^{-}$ final states \rightarrow allow for an accurate study
- background : SS WW with SHS with additional jets suppressed by the requirement on number of jets
- very wide range of predictions ($\sigma^{PYTHIA8} = 1.92 \ pb$, $\sigma^{factorized} = 0.87 \ pb$) \rightarrow measurements are crucial for improving the theoretical understanding

WW from double parton scattering (2/2)

- major backgrounds from WZ, non-prompt lepton (W+jets, QCD), and WY*
- observed significance: 3.9 $\sigma \rightarrow$ first evidence of DPS WW process
- $\sigma^{measured} = 1.41 \pm 0.28 \text{ (stat)} \pm 0.28 \text{ (syst) } pb$

Summary

- the cross sections of multiboson processes are measured over 5 orders of magnitude
 - the measurements of inclusive and differential cross section are pushing for more precise theoretical calculations
- first observation of the electroweak diboson production (SSWW) with 2016 data
- new results on ZγVBS with 2016 data
- significant improvement on the sensitivity of indirect search for new physics
- also set limits on BSM physics
- future prospects: more differential cross sections and observations to come, more unexplored productions to probe, anomalous couplings to combine

