Precision electroweak measurements with ATLAS

N. Andari (CEA Saclay)

On behalf of the ATLAS Collaboration
EW precision measurements

3 precision observables define the EW sector of the SM for example: α_{EM}, G_F, m_Z

--> define the other EW observables at tree-level:

$$m_W^2 \left(1 - \frac{m_W^2}{m_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2} G_F}$$

$$\sin^2 \theta_W = 1 - \frac{M_W^2}{M_Z^2}$$
EW precision measurements

3 precision observables define the EW sector of the SM for example: α_{EM}, G_F, m_Z

\Rightarrow define the other EW observables at tree-level \Rightarrow loop-level:

$$m_W^2 \left(1 - \frac{m_W^2}{m_Z^2}\right) = \frac{\pi \alpha}{\sqrt{2}G_F} (1 + \Delta r)$$

$$\sin^2 \theta_W = 1 - \frac{M_W^2}{M_Z^2} \Rightarrow \sin^2 \theta_{\text{eff}} = \kappa^l \sin^2 \theta_W$$

EW precision measurements:

- Test the self consistency of the SM
- Complementary approach for New Physics discovery
- Probe very high energy scale via radiative corrections
3 precision observables define the EW sector of the SM for example: α_{EM}, G_F, m_Z --> define the other EW observables at tree-level loop-level:

$$m_W^2 \left(1 - \frac{m_W^2}{m_Z^2}\right) = \frac{\pi\alpha}{\sqrt{2}G_F} (1 + \Delta r)$$

$$\sin^2 \theta_W = 1 - \frac{M_W^2}{M_Z^2}$$

$$\sin^2 \theta_{\text{eff}}^l = \kappa^l \sin^2 \theta_W$$

κ^l and Δr reflects loop corrections and depends on m_t^2 and $\ln(m_H)$

EW fit:

$$\sin^2 \theta_{\text{eff}}^l = 0.23149 +/- 0.00007$$

$$m_W = 80358 +/- 8 \text{ MeV}$$

Focus of this talk:

- Weak mixing angle: $\sin^2 \theta_W$
- W-boson mass: m_W
Part I: Weak mixing angle

Data: 20.2 fb⁻¹ of 8TeV

Neutral current: \(q \bar{q} \rightarrow Z/\gamma^* \rightarrow \ell^+ \ell^- \)

\(Z \) couples differently with left and right handed fermions \(\rightarrow \) Forward-backward asymmetry

Drell-Yan cross-section factorisation in full lepton phase space:

\[
\frac{d\sigma}{dp_T^\ell d\phi_d \ell \ell \ell d \cos \theta d \phi} = \frac{3}{16\pi} \frac{d\sigma^{U+L}}{dp_T^\ell d\phi_d \ell \ell \ell} \\
\left\{ (1 + \cos^2 \theta) + \frac{1}{2} A_0(1 - 3 \cos^2 \theta) + A_1 \sin 2\theta \cos \phi \right. \\
+ \frac{1}{2} A_2 \sin^2 \theta \cos 2\phi + A_3 \sin \theta \cos \phi + A_4 \cos \theta \\
+ A_5 \sin^2 \theta \sin 2\phi + A_6 \sin 2\theta \sin \phi + A_7 \sin \theta \sin \phi \right\}
\]

Fold angular polynomials and fit to reco angular distributions binned in \(m_Z \) and \(|y_Z| \)

- \(y_Z \rightarrow 0 \) \(u(x) \sim \bar{u}(x) \) \(\Rightarrow \) maximal dilution
- \(y_Z \gg 0 \) \(u(x) \gg \bar{u}(x) \) \(\Rightarrow \) unambiguous

3 decay channels: \(\mu\mu_{CC} \), \(ee_{CC} \), \(ee_{CF} \)
Uncertainties dominated by statistics (including MC stat) and PDFs

Most precise channel ee_{CF} – less dilution for high dilepton rapidity

Spread between different recent PDFs~6×10^{-5} (only CT10: 22×10^{-5} away from MMHT14)

Similar PDF uncertainties from eigenvectors / replicas

<table>
<thead>
<tr>
<th>Channel</th>
<th>ee_{CC}</th>
<th>$\mu\mu_{CC}$</th>
<th>ee_{CF}</th>
<th>$ee_{CC} + \mu\mu_{CC}$</th>
<th>$ee_{CC} + \mu\mu_{CC} + ee_{CF}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central value</td>
<td>0.23148</td>
<td>0.23123</td>
<td>0.23166</td>
<td>0.23119</td>
<td>0.23140</td>
</tr>
<tr>
<td>Total</td>
<td>68</td>
<td>59</td>
<td>43</td>
<td>49</td>
<td>36</td>
</tr>
<tr>
<td>Stat.</td>
<td>48</td>
<td>40</td>
<td>29</td>
<td>31</td>
<td>21</td>
</tr>
<tr>
<td>Syst.</td>
<td>48</td>
<td>44</td>
<td>32</td>
<td>38</td>
<td>29</td>
</tr>
</tbody>
</table>
Part I: Weak mixing angle

Data: 20.2 fb$^{-1}$ of 8TeV

- ATLAS results consistent with the mean value of LEP and SLD (~3σ discrepancy) and other available measurements.

- ee_{CF} is unique to ATLAS and is more sensitive than combined $ee_{CC} + \mu\mu_{CC}$ (49×10^{-5} ~ similar sensitivity to CMS measurement).
Prospects at HL-LHC:
- Reduction of statistical uncertainty (3000 fb⁻¹)
- Extended pseudo-rapidity coverage (|η|<4)
- Expected reduction of PDF uncertainties
 Including LHeC data: reduction of PDF (total) uncertainties by a factor of ~5
 wrt to HL-LHC PDFs.
Part II: W-boson mass

Very challenging: aim precision of 10 MeV using 40 GeV leptons —> knowledge of peak position $@ 2 \times 10^{-4}$

High experimental precision & accurate theory modelling

Not possible to fully reconstruct the invariant mass

Sensitive final state distributions: p_T^ℓ, m_T, p_T^{miss}

\[
p_T^{\text{miss}} = - \left(\vec{p}_T^\ell + \vec{u}_T \right), \quad m_T = \sqrt{2p_T^\ell p_T^{\text{miss}} (1 - \cos \Delta \phi)}
\]

u_T being the recoil

Sensitive to p_T^W & PDFs

Sensitive to pile-up and UE

Data: 4.6 fb$^{-1}$ of 7 TeV

arXiv:0901.0512
Part II: W-boson mass

Data: 4.6 fb\(^{-1}\) of 7 TeV

Lepton and Recoil calibration

Use Z-boson sample for experimental and theoretical constraints \rightarrow Address Z to W extrapolation
Part II: W-boson mass

Data: 4.6 fb^{-1} of 7 TeV

Consistent with the SM expectation, compatible with the world average and comparable in precision to the currently leading measurements by CDF

Dominated by PDF and QCD model uncertainties (mainly p_T^W)
Part II: W-boson mass

Impact of W-boson transverse momentum modelling

ATLAS Simulation

<table>
<thead>
<tr>
<th>$\sqrt{s} = 7$ TeV, pp→$W^\pm + X$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pythia 8 AZ</td>
</tr>
<tr>
<td>Powheg + Pythia 8 AZNLO</td>
</tr>
<tr>
<td>DYRes</td>
</tr>
<tr>
<td>Powheg MiNLO + Pythia 8</td>
</tr>
</tbody>
</table>

Low pile-up data: collected at $\sqrt{s} = 5$ TeV (~ 250 pb$^{-1}$) and at 13 TeV (~ 340 pb$^{-1}$)

Target 1% uncertainty in bins of 5 GeV for low p_T^W

\rightarrow decrease p_T^W uncertainty in the W-boson mass measurement

ATLAS Online, 13 TeV

<table>
<thead>
<tr>
<th>$\int L dt = 136.4$ fb$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015: $\langle \mu \rangle = 13.4$</td>
</tr>
<tr>
<td>2016: $\langle \mu \rangle = 25.1$</td>
</tr>
<tr>
<td>2017: $\langle \mu \rangle = 37.8$</td>
</tr>
<tr>
<td>2018: $\langle \mu \rangle = 37.3$</td>
</tr>
<tr>
<td>Total: $\langle \mu \rangle = 34.0$</td>
</tr>
</tbody>
</table>

$m_W = 7$ TeV
Potential low pile-up runs at HL-LHC (14 TeV) and HE-LHC (27 TeV): 200 pb\(^{-1}\) per week

- Extended coverage with new tracking detector: |\(\eta\)| < 4 \(\rightarrow\) 30% reduction of PDF uncertainties

- The PDF uncertainties can be reduced to about 4 MeV using HL-LHC PDF sets and to 2 MeV using LHeC PDF sets.
Conclusions

- Precision measurement of the effective leptonic weak mixing angle:
 \[\sin^2 \theta_W = 0.23140 \pm 0.00036 \]
dominated by PDF and statistical uncertainties.

- In preparation for full Run 2 measurements of \(\sin^2 \theta_W \): reduction of statistical uncertainty, higher level of dilution effects.

- Prospects of \(\sin^2 \theta_W \)@HL-LHC: \(15 \times 10^{-5} \) uncertainty can be achieved (at each experiment ATLAS, CMS and LHCb). \(8 \times 10^{-5} \) using LHeC.

- First LHC measurement of the W-boson mass: \(m_W = 80370 \pm 19 \) MeV comparable to precision at the Tevatron.

- **Low pile-up data**: improve precision and measure transverse momentum up to 1% level.

- Prospects of \(m_W \)@HL-LHC: 30% reduction of PDF uncertainty with extended tracker. \(4 \) MeV with HL-LHC PDF sets. \(2 \) MeV with LHeC.

More interesting results to come!