

-

Precision Electroweak Measurements at FCC-ee

Elizabeth Locci CEA-IRFU, Saclay

on behalf of the FCC-ee study group

EPS-HEP-2019 / Elizabeth Locci, CEA-IRFU & Université Paris-Saclay

Evolution of the mass of some fundamental "bricks" of the SM with time

7/13/19

Baseline FCC-ee operation model (2 IPs)

EW Physics Observables at FCC-ee

TeraZ (5 X 10¹² Z)

From data collected in a lineshape energy scan:

- Z mass (key for jump in precision for ewk fits)
- Z width (jump in sensitivity to ewk rad corr)
- R_I = hadronic/leptonic width (α_s(m²_Z), lepton couplings, precise universality test)
- peak cross section (invisible width, N_v)
- $A_{FB}(\mu\mu)$ (sin² θ_{eff} , $\alpha_{QED}(m_Z^2)$, lepton couplings)
- Tau polarization (sin² θ_{eff} , lepton couplings)
- R_b, R_c, A_{FB}(bb), A_{FB}(cc) (quark couplings)

OkuWW (10⁸ WW)

From data collected around and above the WW threshold:

- W mass (key for jump in precision for ewk fits)
- W width (first precise direct meas)
- $R^W = \Gamma_{had} / \Gamma_{lept} (\alpha_s(m_Z^2))$
- Γ_{e} , Γ_{μ} , Γ_{τ} (precise universality test)
- Triple and Quartic Gauge couplings (jump in precision, especially for charged couplings)

I- Determination of Z mass and width

The exact choice of the off-peak energies for m_z , Γ_z is not as crucial at FCC-ee* as at LEP because of the huge statistics But instead the **exact choice is crucial for** $\alpha_{QED}(m_z)$, which is driving the choice of: $v_{s_-} = 88 \text{ GeV } \& v_{s_+} = 94 \text{ GeV}$ (slide 13)

* nevertheless ± 1 GeV (LEP) sub-optimal for $\Gamma_{\rm Z}$

Most critical systematic uncertainties:

- Center-of-mass energy and energy spread
- Luminosity

Requirements on the detector are not crucial , nevertheless:

- the control of the acceptance over Vs is important
- angular resolution < 0.1 mrad
- momentum resolution $\Delta p_T / p_T^2 < 4 \ 10^{-5} \ GeV^{-1}$

Beam energies and crossing angle (FCC-ee Polarization and Center-of-mass Energy Calibration)

Measurement of luminosity

The reference	process is small angle Bhabha scattering
---------------	---

Realistic goal for theoretical uncertainty from higher order for low angle Bhabha is 0.01%^{*} (Blondel, Jadach & al., arXiv:1812.01004) – already at mid-road : 0.04 %

Target $\Delta \mathcal{L}_{abs} \approx 0.0001$, $\Delta \mathcal{L} \approx 5 \ 10^{-5}$ point-to-point

 \longrightarrow reduction factor 8 in uncertainty on number of light neutrino families, N_v* (Δ N_v = 0.001)

* 0.01% uncertainty also reachable with 1.4 $ab^{-1} e^+e^- \rightarrow \gamma\gamma$, theory uncertainty already at this level —— control of large angle Bhabha contamination

accuracy of $\approx 1 \, \mu m$ required on luminometer internal radius

clever acceptance algorithms (a la lep), independent from beam spot position should be extended to beams with crossing angle.

** Measurement of N_v with similar precision provided by Z γ , Z -> vv (above the Z) Systematics on γ selection, luminosity, etc cancel in the ratio

II- Partial widths ratios

 $\mathbf{R}_{I} = \Gamma_{I} / \Gamma_{had} = \sigma_{I} / \sigma_{had}$ is a robust measurement, necessary input for a precise measurement of lepton couplings and $(\alpha_{s}(\mathbf{m}_{z}))$

Exploiting FCC-ee potential requires an accurate control of acceptance, particularly for leptons

- acceptance uncertainties, subdominant at LEP, need factor 5 reduction to match 5.10⁻⁵ goal on R_I*
 - * corresponds to 0.00015 absolute uncertainty on $\alpha_s(m_z^2)$
- knowledge of boundaries, mechanical precisions, can be reached by exploiting 40 years of improvements in technology
- fiducial acceptance is asymmetric at FCC-ee : 30 mrad X-angle causing a boost in transverse direction, which can be measured event by event for e^+e^- , $\mu^+\mu^-$

Z decays to individual quark flavours can be selected when the decay products can be efficiently tagged.

$$\begin{array}{l} \textbf{Z} \rightarrow \textbf{b} \overline{\textbf{b}} \\ \hline \textbf{Measurement of b-tagging efficiency } (\epsilon_b) \& R_b \text{ with double tagging} \\ \text{fraction of single tag: } F_1 = R_b \left(\epsilon_b - \epsilon_{uds}\right) + R_c \left(\epsilon_c - \epsilon_{uds}\right) + \epsilon_{uds} \\ \hline \textbf{fraction of double tag: } F_2 = R_b \left(C_b \epsilon_b^2 - \epsilon_{uds}^2\right) + R_c \left(\epsilon_c^2 - \epsilon_{uds}^2\right) + \epsilon_{uds}^2 \\ \hline \textbf{b} = F_2 / C_b F_1 \end{array}$$

LHC detectors and current taggers can reach 3 x LEP b-tagging efficiency at same c and uds suppression in a harsher environment —> sizeable improvement expected at FCC-ee

- statistical uncertainty from double tag sample
- systematic uncertainty from hemisphere correlations becomes dominating
 FCC-ee projections conservatively consider reduction of that uncertainty from ≈ 0.1 % (LEP) to ≈ 0.03 %

Other sources such as gluon splitting and nasty sources of correlations can be studied with data @LHC

(e.g. momentum correlations, which can be suppressed by keeping b-tagging efficiency flat in momentum)

Improved measurement also in the charm sector

Expected precision on normalized partial widths $P = \sigma / \sigma$

 $R_f = \sigma_f / \sigma_{had}$

	Statistical uncertainty	Systematic uncertainty	improvement w.r.t. LEP
$R_{\mu}\left(R_{\ell}\right)$	10^{-6}	$5 imes 10^{-5}$	20
$R_{ au}$	$1.5 imes10^{-6}$	10^{-4}	20
$R_{ m e}$	$1.5 imes 10^{-6}$	$3 imes 10^{-4}$	20
$R_{ m b}$	5×10^{-5}	3×10^{-4}	10
$R_{ m c}$	$1.5 imes 10^{-4}$	$15 imes 10^{-4}$	10
			relative precisions

III- Asymmetries, τ polarization, couplings and sin² θ_{eff}

Forward-backward asymmetry:
$$A_{FB}^{ff} = \frac{\sigma_F^{ff} - \sigma_B^{ff}}{\sigma_F^{ff} + \sigma_B^{ff}}$$
 unpolarized e beams
at the Z pole $A_{FB,0}^{ff} \approx \frac{3}{4} \quad \mathcal{A}_e^{ff} \quad \text{with } \mathcal{A}_f^{ff} = \frac{2gVfgAf}{(gVf)2 + (gAf)2} = \frac{2gVfgAf}{1 + (gVfgAf)2}, \quad \sin^2\theta_{eff}^{ff} \equiv \frac{1}{4}(1 - \frac{g_{Ve}}{g_{Ae}})$
 $A_{FB,0}^{\mu\mu} \approx (1 - 4\sin^2\theta_{eff})^2 \longrightarrow \Delta \sin^2\theta_{eff}^{ff} \approx 5 \, 10^{-6} \text{ (at least)}$

uncertainty driven by knowledge of Vs (point to point energy uncertainties)

assumes muon-electron universality

7/13/19

Expected precision on coupling ratio factors

A_f

FCC-CDR presentation – R. Tenchini https://indico.cern.ch/event/789349/

	Statistical uncertainty	Systematic uncertainty	improve	ment w.	r.t. LEP
\mathcal{A}_e	$5. \times 10^{-5}$	$1. imes 10^{-4}$		50	
\mathcal{A}_{μ}	$2.5 imes 10^{-5}$	$1.5 imes 10^{-4}$		30	
$\mathcal{A}_{ au}$	$4. imes 10^{-5}$	$3. imes 10^{-4}$		15	
\mathcal{A}_b	$2 imes 10^{-4}$	$30 imes 10^{-4}$		5	
\mathcal{A}_{c}	$3 imes 10^{-4}$	$80 imes 10^{-4}$		4	
$\sin^2 \theta_{W,eff}$ (from muon FB)	10^{-7}	$5. \times 10^{-6}$		100	
$\sin^2 \theta_{W,eff}$ (from tau pol)	10^{-7}	$6.6 imes 10^{-6}$		75	
		rolativo procisiono hu		20	

relative precisions but for $sin^2\theta_{eff}$

Expected precision on vector and axial neutral couplings

fermion type	g_a	g_v
e	$1.5 imes 10^{-4}$	$2.5 imes 10^{-4}$
μ	$2.5 imes 10^{-5}$	$2. \times 10^{-4}$
au	$0.5 imes 10^{-4}$	$3.5 imes 10^{-4}$
b	$1.5 imes10^{-3}$	$1 imes 10^{-2}$
с	$2 imes 10^{-3}$	$1 imes 10^{-2}$

1-2 orders of magnitudes improvement w.r.t LEP, depending on the fermion (still need to explore the potential for the measurement of the s quark coupling)

IV- e.m coupling: direct measurement of $\alpha_{QED}(m_z^2)$

Now $\alpha_{OFD}(M^2_7)$ from the running of $\alpha \longrightarrow \Delta \alpha / \alpha = 1.1 \ 10^{-4}$ $A_{FB}^{\mu\mu} = \frac{N_F^{\mu\mu} - N_B^{\mu\mu}}{N_F^{\mu\mu} + N_B^{\mu\mu}} \approx A_{FB,0}^{\mu\mu} + \alpha_{QED}(s) \frac{s - mZ^2}{2s} f(sin^2\theta_{eff}) \longrightarrow \Delta\alpha_{QED} / \alpha_{QED} \approx \Delta A_{FB}^{\mu\mu} / A_{FB}^{\mu\mu}$ ±^{₽ 1.0}F $\Delta A_{FB}^{\mu\mu} / A_{FB}^{\mu} (s_{-}) < 0$ (α)/G 0.8F $\Delta A_{FB}^{\mu\mu} / A_{FB}^{\mu\mu} (s_{+}) > 0$ 0.6 0.4 0.2 101 0.0 large cancellation of -0.2 -0.4F systematic uncertainties -0.6F α_{QED} accuracy from at FCC-ee combining measurements -0.8 below and above Z peak -1.0 10°50 100 110 140 √s (GeV) 120 110 70 80 90 120 130 140 √s (GeV) Z exchange dominant $\sigma(\alpha)/\alpha$ for 1 year of running at any Vs \rightarrow no sensitivity to α_{OFD} Type Uncertainty Source E_{beam} calibration 1×10^{-5} for **3 10⁻⁵ relative** $< 10^{-7}$ E_{beam} spread uncertainty Experimental Acceptance and efficiency negl. Charge inversion negl. on α_{OED} : Backgrounds negl. 1×10^{-6} $m_{\rm Z}$ and $\Gamma_{\rm Z}$ √s = 87.9 GeV 5×10^{-6} Parametric $\sin^2 \theta_{\rm W}$ $G_{\rm F}$ work on EWK theoretical 5×10^{-7} √s₁ = 94.3 GeV OED (ISR, FSR) $< 10^{-6}$ corrections required Missing EW higher orders, QED(IFI) few 10⁻⁴ Theoretical New physics in the running to reach 3 10-5 1.2×10^{-5} Total **Systematics** 3×10^{-5} (except missing EW higher orders) Statistics

(Patrick Janot, JHEP (2016) 53

arXiv:1512.05544

Raw mass

 $\Delta \sigma_{\rm B}$ < 0.7 fb (2 10⁻³)

7/13/19

from WW direct reconstruction

 \pounds from Bhabha (requirement similar to Z pole) Stat.helps in reducing LEP syst.(fragmentation, jet mass...)

- ∆**vs ≈ 300 keV** @ 162.6 GeV
- Need to use $Z\gamma \& ZZ$ events to control \sqrt{s} at $\sqrt{s} > 200$ GeV (no resonant depolarization) or/and measure mW @ threshold to determine vs above threshold

VI- W decay Branching Fractions

VII- Probing the TGCs at high precision

(Jiayin Gu) (also QGCs WWγγ, WWZγ possible)

7/13/19

FCC-ee has a considerable physics potential:

With **5** 10¹² **Z** around the Z pole and 10⁸ **WW** at and above the W-pair production threshold a large number of electroweak observables (only a sample of them in this talk!) will be measured with unprecedented statistical precision (1 to 2 order of magnitude w.r.t. present measurements). Large statistics also impacts systematic uncertainties: theory (parametric uncertainties) & detector (data-based studies, trading with statistics)!

In order to fully exploit this potential,

the systematic uncertainty must match the statistical uncertainty

• The beam energy calibration is the dominant source of systematic uncertainty for a number of observables

$\Delta E_{\text{CM}} \approx$ 100 keV @ the Z, 300 keV @ the WW threshold

other effects (beam energy spread and asymmetry, etc..) under control at required level

- Luminosity uncertainty critical for all measurements related to the Z cross-section absolute accuracy ≈ 10⁻⁴, relative (point to point) ≈ 10⁻⁵ requires precision of construction and metrology at the level of 1µm (internal radius)
- Also required: control of acceptance, lepton id, good γ/π^0 separation (granularity), flavour-tagging

Conclusions

A lot of interesting and challenging work both

- for experimentalists (new strategies & solutions). A unique opportunity to develop creativity and skills in detection techniques, analysis!
- for theorists (higher orders calculations; on the good track to match experimental uncertainties)

For more informations:

- CDR (mainly Vol.2)
- "Your Questions answered" <a>arXiv:1906.02693
- FCC-ee Polarization and Center-of-mass Energy Calibration (soon out)
- talks @ FCC-week 2019

Table 3.1: Measurement of selected electroweak quantities at the FCC-ee, compared with the present precisions.

Observable	present	FCC-ee	FCC-ee	Comment and
	value \pm error	Stat.	Syst.	dominant exp. error
$m_{\rm Z}~({\rm keV})$	91186700 ± 2200	5	100	From Z line shape scan
				Beam energy calibration
$\Gamma_{\rm Z}~({\rm keV})$	2495200 ± 2300	8	100	From Z line shape scan
			25	Beam energy calibration
$\mathrm{R}^{\mathrm{Z}}_{\ell}~(imes 10^3)$	20767 ± 25	0.06	0.2-1.0	ratio of hadrons to leptons
				acceptance for leptons
$lpha_{ m s}({ m m_Z})~(imes 10^4)$	1196 ± 30	0.1	0.4-1.6	from R_{ℓ}^{Z} above [41]
$R_b (\times 10^6)$	216290 ± 660	0.3	<60	ratio of $b\bar{b}$ to hadrons
				stat. extrapol. from SLD [42]
$\sigma_{ m had}^0~(imes 10^3)~({ m nb})$	41541 ± 37	0.1	4	peak hadronic cross-section
				luminosity measurement
$\mathrm{N}_{\mathrm{ u}}(imes 10^3)$	2991 ± 7	0.005	1	Z peak cross sections
				Luminosity measurement
${\sin^2} heta_{ m W}^{ m eff}(imes 10^6)$	231480 ± 160	3	2 - 5	from $A_{FB}^{\mu\mu}$ at Z peak
			1-2 `	Beam energy calibration
$1/lpha_{ m QED}(m m_Z)(imes 10^3)$	128952 ± 14	4	small	from $A_{FB}^{\mu\mu}$ off peak [32]
$\rm A_{FB}^{b}, 0~(\times 10^4)$	992 ± 16	0.02	1-3	b-quark asymmetry at Z pole
				from jet charge
$ m A_{FB}^{ m pol, au}~(imes 10^4)$	1498 ± 49	0.15	<2	$\boldsymbol{\tau}$ polarisation and charge asymmetry
				τ decay physics
$m_{W} (MeV)$	80350 ± 15	0.6	0.3	From WW threshold scan
				Beam energy calibration
$\Gamma_{ m W}~({ m MeV})$	2085 ± 42	1.5	0.3	From WW threshold scan
				Beam energy calibration
$\alpha_{ m s}({ m m_W})(imes 10^4)$	1170 ± 420	3	small	from R_{ℓ}^{W} [43]
$N_{\nu}(\times 10^3)$	2920 ± 50	0.8	small	ratio of invis. to leptonic
				in radiative Z returns

W & Z Observables

from

CDR-Vol 1

2 or 4 Interaction Points?

FCC-ee design builds up on 50 years of experience with circular e⁺e⁻ colliders:

- LEP (beam energy calibration)
- **SLC** (strong e+e- sources)
- **VEPP-4** (precise beam energy calibration)
- KEKB & PEP-II B factories, BEPC-II (separate bins for e⁻ and e⁺)
- larger number of bunches, continuous injection, mitigation of e-cloud effects, highest stored e current, crossing angle
- ΔAΦNE (crab-waist optics)
- Super B factories (strong focusing)

recent, novel ingredients to reach extremely high luminosities at high energies

FCC-ee can be built, with even better performance than originally thought & parameters much more robust

All technologies at hand

7/13/19

FCC integrated project technical schedule

- FCC integrated project plan is fully integrated with HL-LHC exploitation
- provides for seamless further continuation of HEP in Europe.

Circular vs Linear e⁺e⁻ colliders

Circular	Linear
Considerable amount of experience	• Extensive simulations and paper studies, but limited operational experience
• design luminosities are conservative estimates (always exceeded by factors 2 to 4)	SLC reached half of design peak luminosity after 10 years
	• Larger than expected spot sizes @ SLC, FFTB, ATF2 (not entirely understood).
Required positron production rates lower than those routinely achieved @ SLC and	• Required positron rates exceed present world record (factors 20 to 40).
those expected.	new scheme of high energy γ conversion @ILC -> issues of radiation & cooling.
 Low-emittance e-beams stored & maintained in storage rings for decades 	 Extraction of low-emittance beam from a storage ring is needed (not standard mode) -> emittance increase

Circular collider technology is reliable and relatively low-risk

To polarize or not to polarize? (longitudinally)

• Transverse polarization enables accurate beam energy calibration with resonant depolarization (unique to circular colliders!)

The precision could be affected by longitudinal polarization

- Longitudinal polarization would lead to a loss of luminosity (factor 50)
- For Z, W, t (produced and decaying via parity violating weak interactions), longitudinal polarization brings no information that could not be obtained otherwise

Costs

Construction costs

- 4 GCHF FCC-ee collider & injector
- **17 GCHF FCC-hh collider & injector** (9.4 GCHF for the magnets)
- **7.6 GCHF** FCC-ee common civil engineering & technical infrastructure

Operation costs

• 27 TWh for 14 years of FCC-ee research program -> 1.9 TWh/year (1.2 for CERN today, 1.4 for HL-LHC))

Price of the FCC-ee Higgs Boson = 255 euros (<< CLIC & ILC)

Detectors & Beam Background

 \pounds @ FCC-ee > 10⁶ x \pounds @ LEP (Z pole)

but

- spread over a large number of bunches (16,640 vs 4) -> similar bunch intensities
- asymmetric design of IP -> similar synchrotron radiation -> negligible related background

Detailed simulations

e.g vertex detector occupancy < 10^{-5} @ Z pole, a few 10^{-4} @365GeV

- negligible background
- detectors satisfying the requirements are feasible

Beam polarization & Resonant depolarization

Beam polarization & Resonant depolarization

The spin precession (f_{sp}) frequency is determined by resonant depolarization

Resonant depolarization is produced by exciting the beam with an oscillating magnetic field generated by a vertical kicker magnet (field in the horizontal plane)

If the frequency of the resulting spin kick is in phase with the spin precession, a resonance condition occurs. The electron spins are coherently swept away from the vertical direction, and polarization disappears