

Recent top quark properties in CMS

EPS-HEP2019: European Physical Society Conference on High Energy Physics

A. De Iorio

on behalf of the CMS Collaboration

Ghent, 10-17 Jul 2019

Top quark overview

Main properties

- Heaviest particle of SM: $\frac{1}{2}$ spin, $\frac{2}{3}e$, color charge
- Participates to all interactions
- "Natural" mass:

$$m_{
m top} = y_t rac{v}{\sqrt{2}} \simeq 174 \, {
m GeV} \Longrightarrow y_t \sim 1$$

- Privileged relationship with Higgs boson
- Possible role in the EWSB mechanism
- Decay happens before hadronization can occur:

$$au_{top} = rac{h}{\Gamma_{top}} \simeq rac{h}{G_F m_{top}^3 |\mathrm{V_{tb}}| rac{2}{8\pi\sqrt{2}}} \simeq 2 imes 10^{-25} s$$

- Angular properties directly accessible through its decay products
- Weak interaction decay, dominantly in a W boson and a b quark

Top mass

Why is it important?

- Key input for EW precision tests
- $\bullet\,$ Crucial interplay with the Higgs and $\alpha_{\mathcal{S}}$
 - EW vacuum stability
- Cosmological consequences
- Challenging for experiments and theory
 - theory ambiguities on $m_{\rm t}^{\rm MC}$ vs. $m_{\rm t}^{\rm pole}$

How it can be determined?

Top Pair Decay Channels

- Direct measurements:
 - observable dependent on $m_{\rm t}$
- Indirect measurements:
 - property f($m_{\rm t}^{\rm pole})$
- Many decay channels, many experimental observables
 - $\rightarrow \text{combination}$

Direct top mass in ℓ +jets final state

- 1 high-pt isolated e/µ, $\textit{N}_{jets} \geq$ 4, $\textit{N}_{b-tags} = 2$
- $\bullet~\mbox{Reconstruction}$ using $m_{\rm W}$ constraint + kinematic fit \rightarrow goodness of fit
- Ideogram method: estimation of the jet energy scale factor (JSF) to reduce JES impact

Direct top mass in all-had final state

•
$$N_{jets} = 6$$
, $N_{b-tags} = 2$

• Same strategy of ℓ +jets analysis

Eur. Phys. J. C 79 (2019) 313

Indirect top pole mass in dilepton final state

- \bullet Details on the analysis \rightarrow see Otto's talk
- Triple-differential $\sigma(N_{jets}, M(t\bar{t}), y(t\bar{t}))$

arXiv:1904.05237

Direct top MC mass in dilepton final state

• Analysis strategy details \rightarrow see Juan's talk

Eur. Phys. J. C 79 (2019) 368

Simultaneous fit for cross section and mass extraction

$$\sigma_{
m tar t} = 815 \pm 2 \,({
m stat}) \pm 29 \,({
m syst}) \pm 20 \,({
m lumi}) \,{
m pb}$$

 $m_{
m t}^{
m MC} = 172.33 \pm 0.14 \,({
m stat}) {}^{+0.66}_{-0.72} \,({
m syst}) \,{
m GeV}$

• Residual dependence of the cross section on $m_{
m t}^{
m MC}$ ightarrow indirect measurement of $m_{
m t}^{
m pole}$

PDF set	$m_{ m t}^{ m pole}$ [GeV]
ABMP16	$169.9 \pm 1.8 (\text{fit} + \text{PDF} + \alpha_{\text{S}})^{+0.8}_{-1.2} (\text{scale})$
NNPDF3.1	$173.2 \pm 1.9 (\text{fit} + \text{PDF} + \alpha_{\text{S}})^{+0.9}_{-1.3} (\text{scale})$
CT14	$173.7 \pm 2.0 (\text{fit} + \text{PDF} + \alpha_{\text{S}})^{+0.9}_{-1.4} (\text{scale})$
MMHT14	$173.6 \pm 1.9 (\text{fit} + \text{PDF} + \alpha_{\text{S}})^{+0.9}_{-1.4} (\text{scale})$

Indirect $\overline{\mathrm{MS}}$ top mass in dilepton final state

$$\sigma_{
m tar t} = 815 \pm 2 \, ({
m stat}) \pm 29 \, ({
m syst}) \pm 20 \, ({
m lumi}) \, {
m pb}$$

 $m_{
m t}^{
m MC} = 172.33 \pm 0.14 \, ({
m stat}) {}^{+0.66}_{-0.72} \, ({
m syst}) \, {
m GeV}$

- Residual dependence of the cross section on $m_{
 m t}^{
 m MC}$
 - \rightarrow indirect $m_{\rm t}(m_{\rm t})$ and α_S determination:

Eur. Phys. J. C 79 (2019) 368

Top quark polarization

• By factorizing decay density matrices ρ and $\bar{\rho}$:

$$|\mathcal{M}(q\bar{q}/gg \rightarrow t\bar{t} \rightarrow (\ell^+ \nu b)(\ell^- \bar{\nu}\bar{b}))|^2 \sim Tr[\rho R\bar{\rho}]$$

• Study spin density matrix *R* using double-differential cross section:

$$\frac{1}{\sigma}\frac{d\sigma}{d\cos\theta_1^i d\cos\theta_2^j} = \frac{1}{4}\left(1 + B_1^i \cos\theta_1^i + B_2^j \cos\theta_2^j - C_{ij} \cos\theta_1^i \cos\theta_2^j\right)$$

Top quark polarization

• By factorizing decay density matrices ρ and $\bar{\rho}$:

$$|\mathcal{M}(q\bar{q}/gg \rightarrow t\bar{t} \rightarrow (\ell^+ \nu b)(\ell^- \bar{\nu}\bar{b}))|^2 \sim Tr[\rho R\bar{\rho}]$$

• Study spin density matrix *R* using double-differential cross section:

$$\frac{1}{\sigma}\frac{d\sigma}{d\cos\theta_1^i d\cos\theta_2^j} = \frac{1}{4}\left(1 + B_1^i \cos\theta_1^i + B_2^j \cos\theta_2^j - C_{ij} \cos\theta_1^i \cos\theta_2^j\right)$$

• Derive single-differential cross sections with respect to $\cos \theta_1^i$, $\cos \theta_2^i$, and $\cos \theta_1^i \cos \theta_2^j$: Polarization

$$\frac{1}{\sigma}\frac{d\sigma}{d\cos\theta_1^i} = \frac{1}{2}\left(1 + B_1^i\cos\theta_1^i\right) \quad \frac{1}{\sigma}\frac{d\sigma}{d\cos\theta_2^i} = \frac{1}{2}\left(1 + B_2^j\cos\theta_2^j\right)$$

Spin correlation

$$\frac{1}{\sigma}\frac{d\sigma}{d\cos\theta_1^i\cos\theta_2^j} = \frac{1}{2}\left(1 - \frac{\mathbf{C_{ij}}}{\cos\theta_1^i\cos\theta_2^j}\right)\ln\left(\frac{1}{\cos\theta_1^i\cos\theta_2^j}\right)$$

Measurement of the top quark polarization

- $t\bar{t} \rightarrow (\ell^+ \nu b)(\ell^- \bar{\nu} \bar{b})$ perfect for spin measurements: spin analyzing power of the lepton ~ 1
- Kinematic fit for full event reconstruction

CMS-PAS-TOP-18-006

- χ^2 minimization technique to unfold distributions
- 15 single-differential cross sections measured

Yukawa coupling

- Weak force mediated corrections $\sim \mathcal{O}(\alpha^2 \alpha_{\textit{weak}})$
- \bullet t and \bar{t} with small relative velocity, $\sigma_{t\bar{t}}$ sensitive to Yukawa coupling
- 1 high-pt isolated e/ μ , $N_{jets} \ge$ 3, $N_{b-tags} \ge$ 2
- New kinematic reconstruction technique with one missing jet events
- $\bullet\,$ Missing jet events favour low-m_{\mathrm{t}\bar{\mathrm{t}}} region \to max sensitivity
- Extraction from $M_{t\bar{t}}$ and $\Delta y = y_t y_{\bar{t}}$ for different jet multiplicities.

A. De lorio (CMS Collaboration)

Top quark spin asymmetry

• Spin asymmetry from differential *t*-channel single-top cross section

$$\frac{d\sigma}{d\cos\theta_X^*} = \frac{1}{2}(1 + P_t^{(\bar{s})}\alpha_X\cos\theta_X^*) = \left(\frac{1}{2} + A_X\cos\theta_X^*\right)$$

- 1 ℓ with $p_{\mathrm{T}} > 35(26)$ for e(μ), $N_{jets} = 2$ -3, $N_{b-tags} = 0$ -2
- Differential measurement with χ^2 minimization technique

Conclusions

- Many properties of the top quark measured with high precision
- Top mass is one of the most important: direct and indirect measurements with uncertainties below 1 GeV
- High quantity of data allows measurements of rare processes to test the SM predictions
- Many BSM models can be tested with differential and multi-differential measurements
- No deviation from the SM predictions are observed but the top quark sector is one of the most interesting for BSM physics manifestation

A. De Iorio (CMS Collaboration)

11.07.2019 13 / 14

hank you

BACKUP

Production processes

Top quark can be produced by:

Strong interaction

 $t\bar{t}$ pairs

 $\begin{array}{l} {\rm q}\bar{\rm q} \to {\rm t}\bar{\rm t} \ (15\%) \quad {\rm gg} \to {\rm t}\bar{\rm t} \ (85\%) \\ \sigma_{\rm t\bar{t}} = 816^{+19.4+34.4}_{-28.6-34.4} \ {\rm pb} \end{array}$

Weak interaction

- s-channel
- tW associate production
- t-channel
- tZ associate production

On top mass definition

In the on-shell (o.s.) and \overline{MS} schemes $S^{R}(p)$ can then be expressed in terms of pole and \overline{MS} masses, respectively, as follows:

The relation between top-quark pole (m_t^{pole}) and $\overline{\text{MS}}(m_t(m_t))$ masses was calculated up to four loops in and reads:

 $m_{t,\text{pole}} = \bar{m}_t(\bar{m}_t) \left[1 + 0.4244 \,\alpha_S + 0.8345 \,\alpha_S^2 + 2.375 \,\alpha_S^3 + (8.615 \pm 0.017) \,\alpha_S^4 + \mathcal{O}(\alpha_S^5) \right] \\ = \left[163.508 + 7.529 + 1.606 + 0.496 + (0.195 \pm 0.0004) \right] \text{GeV}.$

For further details see arXiv:1903.06574v2

Ideogram method

- PDFs from samples with 7 different mt and 5 different JSF values
- Method bias estimated with pseudo-experiments and corrected

$$\mathcal{L}(\mathsf{sample}|m_{\mathsf{t}},\mathsf{JSF}) = P(\mathsf{JSF}) \prod_{\mathsf{events}} \left(\sum_{i=1}^{n} P_{\mathsf{gof}}(i) \times \left[\sum_{j} f_{j} P_{j}(m_{\mathsf{t},i}^{\mathsf{fit}}|m_{\mathsf{t}},\mathsf{JSF}) P_{j}(m_{\mathrm{W},i}^{\mathsf{reco}}|m_{\mathsf{t}},\mathsf{JSF}) \right] \right)^{\mathsf{w}_{\mathsf{evt}}},$$

where:

- i=i-th permutation in one event
- j=correct permutation, uncorrect permutation, unmatched

Eur. Phys. J. C 78 (2018) 891

Direct top mass in ℓ +jets final state details

 Main systematic uncertainty: JEC 0.18 GeV (experimental) JEC 0.32 GeV (model)

Eur. Phys. J. C 78 (2018) 891

	2D approach		1D approach	Hybri	d
	δm_{*}^{2D}	δJSF^{2D}	δm_t^{1D}	δm_{*}^{hyb}	δJSF^{hyb}
	[GeV]	[%]	[GeV]	[GeV]	[%]
Experimental uncertainties					
Method calibration	0.05	< 0.1	0.05	0.05	< 0.1
JEC (quad. sum)	0.13	0.2	0.83	0.18	0.3
- InterCalibration	(-0.02)	(<0.1)	(+0.16)	(+0.04)	(<0.1)
 MPFInSitu 	(-0.01)	(<0.1)	(+0.23)	(+0.07)	(<0.1)
 Uncorrelated 	(-0.13)	(+0.2)	(+0.78)	(+0.16)	(+0.3)
Jet energy resolution	-0.08	+0.1	+0.04	-0.04	+0.1
b tagging	+0.03	< 0.1	+0.01	+0.03	< 0.1
Pileup	-0.08	+0.1	+0.02	-0.05	+0.1
Non-tt background	+0.04	-0.1	-0.02	+0.02	-0.1
Modeling uncertainties					
JEC Flavor (linear sum)	0.42	0.1	0.31	0.39	< 0.1
- light quarks (uds)	(+0.10)	(-0.1)	(-0.01)	(+0.06)	(-0.1)
- charm	(+0.02)	(<0.1)	(-0.01)	(+0.01)	(<0.1)
- bottom	(-0.32)	(<0.1)	(-0.31)	(-0.32)	(<0.1)
– gluon	(-0.22)	(+0.3)	(+0.02)	(-0.15)	(+0.2)
b jet modeling (quad. sum)	0.13	0.1	0.09	0.12	< 0.1
 b frag. Bowler–Lund 	(-0.07)	(+0.1)	(-0.01)	(-0.05)	(<0.1)
 b frag. Peterson 	(+0.04)	(<0.1)	(+0.05)	(+0.04)	(<0.1)
 semileptonic B decays 	(+0.11)	(<0.1)	(+0.08)	(+0.10)	(<0.1)
PDF	0.02	< 0.1	0.02	0.02	< 0.1
Ren. and fact. scales	0.02	0.1	0.02	0.01	< 0.1
ME/PS matching	-0.08	+0.1	+0.03	-0.05	+0.1
ME generator	$+0.19\pm0.14$	+0.1	$+0.29\pm0.08$	$+0.22\pm0.11$	+0.1
ISR PS scale	$+0.07\pm0.09$	+0.1	$+0.10\pm0.05$	$+0.06\pm0.07$	< 0.1
FSR PS scale	$+0.24\pm0.06$	-0.4	-0.22 ± 0.04	$+0.13\pm0.05$	-0.3
Top quark p_T	+0.02	-0.1	-0.06	-0.01	-0.1
Underlying event	-0.10 ± 0.08	+0.1	$+0.01\pm0.05$	-0.07 ± 0.07	+0.1
Early resonance decays	-0.22 ± 0.09	+0.8	$+0.42\pm0.05$	-0.03 ± 0.07	+0.5
Color reconnection	$+0.34\pm0.09$	-0.1	$+0.23\pm0.06$	$+0.31\pm0.08$	-0.1
Total systematic	0.72	1.0	1.09	0.62	0.8
Statistical (expected)	0.09	0.1	0.06	0.08	0.1
Total (expected)	0.72	1.0	1.09	0.62	0.8

Direct top mass in all-had final state details

	2D		1D hyb		rid	
	δm_{\star}^{2D}	δISF^{2D}	δm_{\star}^{1D}	δm_{\star}^{hyb}	δISF^{hyb}	
	[GeV]	[%]	[GeV]	[GeV]	[%]	
Experimental uncertainties						
Method calibration	0.03	0.0	0.03	0.03	0.0	
JEC (quad. sum)	0.12	0.2	0.82	0.17	0.3	
- Intercalibration	-0.01	0.0	+0.16	+0.04	+0.1	
- MPFInSitu	-0.01	0.0	+0.23	+0.07	+0.1	
 Uncorrelated 	-0.12	-0.2	+0.77	+0.15	+0.3	
Jet energy resolution	-0.18	+0.3	+0.09	-0.10	+0.2	
b tagging	0.03	0.0	0.01	0.02	0.0	
Pileup	-0.07	+0.1	+0.02	-0.05	+0.1	
All-jets background	0.01	0.0	0.00	0.01	0.0	
All-jets trigger	+0.01	0.0	0.00	+0.01	0.0	
ℓ+jets Background	-0.02	0.0	+0.01	-0.01	0.0	
ℓ+jets Trigger	0.00	0.0	0.00	0.00	0.0	
Lepton isolation	0.00	0.0	0.00	0.00	0.0	
Lepton identification	0.00	0.0	0.00	0.00	0.0	
Modeling uncertainties						
JEC flavor (linear sum)	-0.39	+0.1	-0.31	-0.37	+0.1	
 light quarks (uds) 	+0.11	-0.1	-0.01	+0.07	-0.1	
– charm	+0.03	0.0	-0.01	+0.02	0.0	
- bottom	-0.31	0.0	-0.31	-0.31	0.0	
– gluon	-0.22	+0.3	+0.02	-0.15	+0.2	
b jet modeling (quad. sum)	0.08	0.1	0.04	0.06	0.1	
 b frag. Bowler–Lund 	-0.06	+0.1	-0.01	-0.05	0.0	
 b frag. Peterson 	-0.03	0.0	0.00	-0.02	0.0	
- semileptonic b hadron decays	-0.04	0.0	-0.04	-0.04	0.0	
PDF	0.01	0.0	0.01	0.01	0.0	
Ren. and fact. scales	0.01	0.0	0.02	0.01	0.0	
ME/PS matching	-0.10 ± 0.08	+0.1	$+0.02\pm0.05$	$+0.07\pm0.07$	+0.1	
ME generator	$+0.16\pm0.21$	+0.2	$+0.32 \pm 0.13$	$+0.21\pm0.18$	+0.1	
ISR PS scale	$+0.07\pm0.08$	+0.1	$+0.10\pm0.05$	$+0.07\pm0.07$	0.1	
FSR PS scale	$+0.23\pm0.07$	-0.4	-0.19 ± 0.04	$+0.12\pm0.06$	-0.3	
Top quark p _T	+0.01	-0.1	-0.06	-0.01	-0.1	
Underlying event	-0.06 ± 0.07	+0.1	$+0.00 \pm 0.05$	-0.04 ± 0.06	+0.1	
Early resonance decays	-0.20 ± 0.08	+0.7	$+0.42 \pm 0.05$	-0.01 ± 0.07	+0.5	
CR modeling (max. shift)	$+0.37\pm0.09$	-0.2	$+0.22 \pm 0.06$	$+0.33\pm0.07$	-0.1	
 "gluon move" (ERD on) 	$+0.37\pm0.09$	-0.2	$+0.22 \pm 0.06$	$+0.33\pm0.07$	-0.1	
 "QCD inspired" (ERD on) 	-0.11 ± 0.09	-0.1	-0.21 ± 0.06	-0.14 ± 0.07	-0.1	
Total systematic	0.71	1.0	1.07	0.61	0.7	
Statistical (expected)	0.08	0.1	0.05	0.07	0.1	
Total (expected)	0.72	1.0	1.08	0.61	0.7	

	δm_t^{hyb} [GeV]			
	all-jets	ℓ+jets	combination	
Experimental uncertainties				
Method calibration	0.06	0.05	0.03	
JEC (quad. sum)	0.15	0.18	0.17	
- Intercalibration	-0.04	+0.04	+0.04	
- MPFInSitu	+0.08	+0.07	+0.07	
 Uncorrelated 	+0.12	+0.16	+0.15	
Jet energy resolution	-0.04	-0.12	-0.10	
b tagging	0.02	0.03	0.02	
Pileup	-0.04	-0.05	-0.05	
All-jets background	0.07	-	0.01	
All-jets trigger	+0.02	-	+0.01	
ℓ+jets background	-	+0.02	-0.01	
Modeling uncertainties				
JEC flavor (linear sum)	-0.34	-0.39	-0.37	
 light quarks (uds) 	+0.07	+0.06	+0.07	
- charm	+0.02	+0.01	+0.02	
- bottom	-0.29	-0.32	-0.31	
– gluon	-0.13	-0.15	-0.15	
b jet modeling (quad. sum)	0.09	0.12	0.06	
 b frag. Bowler–Lund 	-0.07	-0.05	-0.05	
 b frag. Peterson 	-0.05	+0.04	-0.02	
- semileptonic b hadron decays	-0.03	+0.10	-0.04	
PDF	0.01	0.02	0.01	
Ren. and fact. scales	0.04	0.01	0.01	
ME/PS matching	+0.24	-0.07	+0.07	
ME generator	-	+0.20	+0.21	
ISR PS scale	+0.14	+0.07	+0.07	
FSR PS scale	+0.18	+0.13	+0.12	
Top quark p _T	+0.03	-0.01	-0.01	
Underlying event	+0.17	-0.07	-0.06	
Early resonance decays	+0.24	-0.07	-0.07	
CR modeling (max. shift)	-0.36	+0.31	+0.33	
 – "gluon move" (ERD on) 	+0.32	+0.31	+0.33	
 "QCD inspired" (ERD on) 	-0.36	-0.13	-0.14	
Total systematic	0.70	0.62	0.61	
Statistical (expected)	0.20	0.08	0.07	
Total (expected)	0.72	0.63	0.61	

Top quark chromomagnetic dipole moment

- CMDM is for a colour-charged particle the analogous to the magnetic dipole for electrically charged particle
- Top quark CMDM small due to intrinsic top spin and colour charge
- BSM predict anomalous CMDM, parametrizable in dim-6 EFT
- C_{Gt} sensitivity improved by 50% w.r.t. previous 13 TeV results

A. De Iorio (CMS Collaboration)

Top charge asymmetry

 \bullet Signals of BSM physics could also appear in $t\bar{t}$ production as anomalous top quark or leptonic charge asymmetries

$$egin{aligned} \mathcal{A}_{\mathrm{c}}^{\mathrm{t}ar{\mathrm{t}}} &= rac{\sigma_{\mathrm{t}ar{\mathrm{t}}}(\Delta|y|(\mathrm{t},ar{\mathrm{t}})>0) - \sigma_{\mathrm{t}ar{\mathrm{t}}}(\Delta|y|(\mathrm{t},ar{\mathrm{t}})<0)}{\sigma_{\mathrm{t}ar{\mathrm{t}}}(\Delta|y|(\mathrm{t},ar{\mathrm{t}})>0) + \sigma_{\mathrm{t}ar{\mathrm{t}}}(\Delta|y|(\mathrm{t},ar{\mathrm{t}})<0)} \ \mathcal{A}_{\mathrm{c}}^{\ellar{\ell}} &= rac{\sigma_{\mathrm{t}ar{\mathrm{t}}}(\Delta\eta(\ell,ar{\ell})>0) - \sigma_{\mathrm{t}ar{\mathrm{t}}}(\Delta\eta(\ell,ar{\ell})<0)}{\sigma_{\mathrm{t}ar{\mathrm{t}}}(\Delta\eta(\ell,ar{\ell})>0) + \sigma_{\mathrm{t}ar{\mathrm{t}}}(\Delta\eta(\ell,ar{\ell})<0)} \ \end{aligned}$$

CMS-TOP-17-014