# Measurements of inclusive neutral diboson production with ATLAS

on behalf of the ATLAS collaboration: Stefan Richter (DESY) EPS HEP conference · Ghent, Belgium · 13 July 2019 link to this talk

#### Overview

Motivation:

- Test electroweak (EWK) sector at LHC energies
- Search for anomalous neutral triple gauge couplings (aTGCs)  $\notin$  SU(2)<sub>L</sub> × U(1)<sub>Y</sub>
- Rich electroweak and QCD phenomenology see next slide!

Analyses:

- ▶ pp  $\rightarrow \ell^+ \ell^- \ell'^+ \ell'^-$  mass [STDM-2017-09]
- ►  $ZZ \rightarrow \ell^+ \ell^- \nu \bar{\nu}$  [STDM-2017-03]
- $\blacktriangleright \ \mathsf{Z}\gamma \to \nu\bar{\nu}\gamma \qquad [\mathsf{STDM-2017-18}]$
- ►  $Z\gamma \rightarrow \ell^+ \ell^- \gamma$  [ATLAS-CONF-2019-034] (NEW!)

All use 36 fb<sup>-1</sup> of 13 TeV proton-proton collision data, except  $Z\gamma \rightarrow \ell^+ \ell^- \gamma$  (139 fb<sup>-1</sup>)

- Statistical uncertainty dominates for differential cross sections (except for  $Z\gamma \rightarrow \ell^+ \ell^- \gamma$ )
- Inclusive with respect to hadronic jets

I.e. (almost) all observables are integrated over jet multiplicities and kinematics 2

#### Subprocesses & theory status



Colour-singlet final state  $\rightarrow$  differential, fiducial NNLO calculations available

- EWK corrections becoming available
- Loop-induced gluon-gluon initiated subprocesses, with large LO  $\rightarrow$  NLO QCD corrections
- Fragmentation photon contribution can be removed by Frixione isolation [hep-ph/9801442]

#### Analysis strategies

Use fiducial phase spaces defined in terms of stable particles to limit model dependence

Reconstructed objects:

- Charged leptons:
  - ▶ If two leptons: medium identification,  $p_T \gtrsim 25$  GeV, isolated
  - If four leptons: *loose* identification, down to  $p_T \gtrsim 7$  GeV, isolated

(Inclusive *p*<sub>T</sub> spectrum mostly determined by the electroweak scale)

- Photons:
  - If no charged leptons: require high  $E_T > 150$  GeV, isolated
  - If charged leptons: require  $E_T > 30$  GeV, isolated
- $E_T^{\text{miss}}$  (neutrinos): poorer resolution, require  $E_T^{\text{miss}} > 150 \text{ GeV}$

Backgrounds with misidentified/non-prompt leptons or photons determined with partially data-driven methods

## $\begin{array}{c} pp \rightarrow 4\ell \\ \text{STDM-2017-09} \end{array}$

#### $pp \rightarrow 4\ell$ : four-lepton mass



#### **Reconstructed yields**

Unfolded cross section

Rich structure of contributing subprocesses

Fitted gg  $\rightarrow$  4 $\ell$  normalisation w.r.t. NLO prediction:  $\mu_{gg} = 1.3 \pm 0.5$  (exp. 1.0  $\pm$  0.4) W.r.t. LO:  $\mu_{gg} = 2.7 \pm 0.9$ 

#### $\mathsf{pp} o 4\ell$ : $m_{4\ell}$ vs. matrix-element discriminant



Bottom: more (s-channel) "Higgs-like"

Constrain off-shell Higgs production cross section ( $m_{4\ell} > 180$  GeV): Upper limit of 6.5 times SM prediction (95% CL)  $- 1\sigma$  expected: [4.2, 7.2] Dedicated measurement: 4.5 times SM prediction [HIGG-2017-06]



#### STDM-2017-03

#### $ZZ \rightarrow 2\ell 2\nu$ : overview

- Larger cross section than the cleaner ZZ  $\rightarrow 4\ell$  [STDM-2016-13]  $\sim$  20% Z branching fraction vs.  $\sim$ 7%.
- $\sim$ 70% of background is partially identified WZ  $\rightarrow \ell' \nu \ell^+ \ell^-$  Shapes from MC, normalisation from 3-lepton control region

#### $ZZ \rightarrow 2\ell 2\nu$ : kinematics and selection



Selected regions indicated in the figures

Requirements on all observables except the one shown are already applied

#### $ZZ \rightarrow 2\ell 2\nu$ : cross sections

|                                                    |             | Measured                                                                    | Predicted    |
|----------------------------------------------------|-------------|-----------------------------------------------------------------------------|--------------|
|                                                    | ee          | $12.2 \pm 1.0 \text{ (stat)} \pm 0.5 \text{ (syst)} \pm 0.3 \text{ (lumi)}$ | $11.2\pm0.6$ |
| $\sigma_{ZZ \to \ell \ell \nu \nu}^{\rm fid}$ [fb] | $\mu\mu$    | 13.3 $\pm$ 1.0 (stat) $\pm$ 0.5 (syst) $\pm$ 0.3 (lumi)                     | $11.2\pm0.6$ |
|                                                    | $ee+\mu\mu$ | $25.4 \pm 1.4 \text{ (stat)} \pm 0.9 \text{ (syst)} \pm 0.5 \text{ (lumi)}$ | $22.4\pm1.3$ |
| $\sigma_{ZZ}^{\rm tot}$ [pb]                       | Total       | $17.8 \pm 1.0 \text{ (stat)} \pm 0.7 \text{ (syst)} \pm 0.4 \text{ (lumi)}$ | $15.7\pm0.7$ |

Extrapolated cross section agrees with 4 $\ell$ -channel measurement:  $\sigma_{ZZ}^{tot}$  = 17.2 ±0.6 (stat) ±0.4 (syst) ±0.6 (lumi) pb



#### $ZZ \rightarrow 2\ell 2\nu$ : search for ZZZ and $ZZ\gamma$ couplings

Search for new physics using unfolded  $p_T(\ell \ell)$  distribution

#### Better BSM sensitivity than $ZZ \to 4\ell$

Fiducial cross section around the same size, but  $\ell\ell\nu\nu$  has more events at high  $p_T(\ell\ell)$ 



## $Z(\rightarrow \nu \nu)\gamma$ & $Z(\rightarrow \ell \ell)\gamma$ (New!) STDM-2017-18 & ATLAS-CONF-2019-034

#### $Z\gamma$ : overview

 $Z(\rightarrow \nu\nu)\gamma$  has larger cross section than  $Z(\rightarrow \ell\ell)\gamma$ , still less background than  $Z(\rightarrow q\bar{q})\gamma$  (QCD jets!)

Backgrounds:

- ▶ Jet ~→ photon (fitted in 2D sideband with inverted photon ID and/or isolation)
- In  $Z(\rightarrow \nu \nu)\gamma$ :
  - Electron  $\rightsquigarrow$  photon (fake factor from Z  $\rightarrow$  ee events, applied to W  $\rightarrow$  e $\nu$  events)
  - $W(\rightarrow \tau \nu, \mu \nu, e\nu)\gamma$  and  $\gamma$  + jets

Normalisation fitted to data in control regions: 1-lepton, small  $E_T^{miss}$  significance  $\rightarrow$  significantly reduces systematic uncertainty w.r.t. 8 TeV [STDM-2014-01]

► In Z( $\rightarrow \ell \ell$ ) $\gamma$ :

▶ Pileup of Z →  $\ell\ell$  and  $\gamma$  (fitted to  $z_{\gamma} - z_{vertex}$ ), around 2% of total expected yield

#### $Z\gamma$ : kinematics



 $Z(\rightarrow \nu\nu)\gamma$  without jet veto

 $Z(\rightarrow \nu\nu)\gamma$  with jet veto (gives higher purity at large  $E_T^{\gamma}$ )

 $Z(\rightarrow \ell \ell)\gamma$ 

#### $Z(\rightarrow \nu\nu)\gamma$ : differential cross sections



Extrapolated to simplified "extended fiducial region" (no charged-lepton veto, no  $E_{T}^{miss}$  significance and direction requirement)

#### $Z(\rightarrow \ell \ell)\gamma$ : differential cross sections



Not measurable in  $Z(\rightarrow \nu\nu)\gamma$ 

 $Z(\rightarrow \nu\nu)\gamma$ : search for  $ZZ\gamma$  and  $Z\gamma\gamma$  couplings



Search uses the yield in the bin  $E_T^{\gamma} > 600$  GeV with jet veto (previous slide)

Only CP-conserving coefficients considered The confidence intervals for the corresponding CP-violating ones are very similar

Currently world's best limits on neutral aTGCs

#### Summary

Rich programme of inclusive neutral diboson measurements

Strengths of different Z decay channels:

- Charged leptons: higher precision and acceptance at low p<sub>T</sub>,

   → good for inclusive cross section measurements
- Neutrinos: higher cross section,
  - $\rightarrow$  good for BSM sensitivity at high scales
- Search for aTGCs
  - No deviation from the SM observed
  - Set world-leading limits

Model-independence and interpretability have high priority Searches/interpretations using unfolded cross sections

Statistical uncertainty will decrease with more data

Thank you for your attention!



#### $ZZ \rightarrow 2\ell 2\nu$ : fiducial definition

| Total phase space    | Born-level leptons (ee or $\mu\mu$ )                                                                                               |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Total phase space    | $66 < m_{\ell\ell}, m_{\nu\nu} < 116 { m ~GeV}$                                                                                    |
|                      | Dressed leptons (e or $\mu$ ): $p_{\rm T} > 7 \text{ GeV},  \eta  < 2.5$                                                           |
|                      | Jets: $p_{\rm T} > 20$ GeV, $ \eta  < 4.5$                                                                                         |
| Fiducial phase space | Reject leptons if overlapping with a jet within $\Delta R < 0.4$                                                                   |
|                      | Two leptons with leading (subleading) $p_{\rm T} > 30~(20)~{\rm GeV}$                                                              |
|                      | $76 < m_{\ell\ell} < 106 { m ~GeV}$                                                                                                |
|                      | $E_{\mathrm{T}}^{\mathrm{miss}} > 90 \ \mathrm{GeV}$ and $V_{\mathrm{T}}/S_{\mathrm{T}} > 0.65$                                    |
|                      | $\Delta \phi(\vec{p}_{\mathrm{T}}^{\ell\ell}, \vec{E}_{\mathrm{T}}^{\mathrm{miss}}) > 2.2$ radians and $\Delta R_{\ell\ell} < 1.9$ |

#### $ZZ \rightarrow 2\ell 2\nu$ : event selection

| Step                                                                 | Selection criteria                                                                                         |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Two leptons                                                          | Two opposite-sign leptons, leading (subleading) $p_{\rm T} > 30~(20)~{\rm GeV}$                            |
| Jets                                                                 | $p_{\mathrm{T}} > 20$ GeV, $ \eta  < 4.5$ , and $\Delta R > 0.4$ relative to the leptons                   |
| Third-lepton veto                                                    | No additional lepton with $p_{\rm T}>7~{\rm GeV}$                                                          |
| $m_{\ell\ell}$                                                       | $76 < m_{\ell\ell} < 106~{ m GeV}$                                                                         |
| Hard jets                                                            | $p_{\rm T}>25~{\rm GeV}$ for $ \eta <2.4,~p_{\rm T}>40~{\rm GeV}$ for $2.4< \eta <4.5$                     |
| $E_{\mathrm{T}}^{\mathrm{miss}}$ and $V_{\mathrm{T}}/S_{\mathrm{T}}$ | $E_{\mathrm{T}}^{\mathrm{miss}} > 110~\mathrm{GeV}$ and $V_{\mathrm{T}}/S_{\mathrm{T}} > 0.65$             |
| $\Delta R_{\ell\ell}$                                                | $\Delta R_{\ell\ell} < 1.9$                                                                                |
| $\Delta \phi(\vec{p}_{\rm T}^{\ell\ell},\vec{E}_{\rm T}^{\rm miss})$ | $\Delta \phi(\vec{p}_{\mathrm{T}}^{\ell\ell}, \vec{E}_{\mathrm{T}}^{\mathrm{miss}}) > 2.2 \text{ radians}$ |
| <i>b</i> -jet veto                                                   | $N(b\text{-jets})=0$ with $b\text{-jet}~p_{\mathrm{T}}>20~\mathrm{GeV}$ and $ \eta <2.5$                   |

## $ZZ \rightarrow 2\ell 2\nu$ : yields

|                          | ee                       | $\mu\mu$                 |  |
|--------------------------|--------------------------|--------------------------|--|
| Data                     | 371                      | 416                      |  |
| Signal                   |                          |                          |  |
| qqZZ                     | $194 \pm 3 \pm 12$       | $202 \pm 3 \pm 12$       |  |
| ggZZ                     | $25.1 \pm 0.3 \pm 7.7$   | $26.4 \pm 0.3 \pm 8.1$   |  |
| Backgrounds              |                          |                          |  |
| WZ                       | $92.9 \pm 3.0 \pm 4.8$   | $100.7 \pm 3.2 \pm 5.2$  |  |
| Non-resonant- $\ell\ell$ | $25.5 \pm 3.4 \pm 1.8$   | $31.5 \pm 4.2 \pm 2.2$   |  |
| Z + jets                 | $4.7 \pm 0.2 \pm 2.3$    | $5.9 \pm 0.3 \pm 2.8$    |  |
| $ZZ \to 4\ell$           | $3.8 \pm 0.2 \pm 0.3$    | $4.2 \pm 0.2 \pm 0.3$    |  |
| Others                   | $0.87 \pm 0.03 \pm 0.17$ | $0.87 \pm 0.03 \pm 0.17$ |  |
| Background expected      | $128 \pm 5 \pm 6$        | $143 \pm 5 \pm 6$        |  |
| Total expected           | $347 \pm 5 \pm 15$       | $372 \pm 6 \pm 16^{-2}$  |  |

#### $pp \to 4\ell$ : event selection

| Physics Object preselection        |                                                                      |                                                                                                                           |  |
|------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|
|                                    | Electrons                                                            | Muons                                                                                                                     |  |
| Identification                     | Loose working point [23]                                             | Loose working point [22]                                                                                                  |  |
| Kinematics                         | $E_{\rm T}>7~{\rm GeV}$ and $ \eta <2.47$                            | $p_{\rm T} > 5 \text{ GeV} \text{ and }  \eta  < 2.7$<br>$p_{\rm T} > 15 \text{ GeV} \text{ if calorimeter-tagged } [22]$ |  |
| Interaction point constraint       | $ z_0 \cdot \sin \theta  < 0.5 \text{ mm}$                           | $ z_0 \cdot \sin \theta  < 0.5 \text{ mm}$                                                                                |  |
| Cosmic-ray muon veto               |                                                                      | $ d_0  < 1 \text{ mm}$                                                                                                    |  |
| Quadruplet Selection               |                                                                      |                                                                                                                           |  |
| QUADRUPLET FORMATION               | N Procedure and kinematic selection criteria as in Table ??          |                                                                                                                           |  |
| LEPTON ISOLATION                   |                                                                      |                                                                                                                           |  |
|                                    | Electrons                                                            | Muons                                                                                                                     |  |
| Track isolation                    | $\sum p_{\mathrm{T}} < 0.15 E_{\mathrm{T}}^{e}$                      | $\sum p_{\mathrm{T}} < 0.15 p_{\mathrm{T}}^{\mu}$                                                                         |  |
| Calorimeter isolation              | $\sum_{\Delta R=0.2}^{\Delta R \le 0.2} E_{\rm T} < 0.2 E_{\rm T}^e$ | $\sum_{\Delta R=0.2}^{\Delta R \le 0.3} E_{\rm T} < 0.3 p_{\rm T}^{\mu}$                                                  |  |
|                                    | Contributions from the other                                         | r leptons of the quadruplet not considered                                                                                |  |
| Lepton transverse impact parameter |                                                                      |                                                                                                                           |  |
|                                    | Electrons                                                            | Muons                                                                                                                     |  |
|                                    | $d_0/\sigma_{d_0} < 5$                                               | $d_0/\sigma_{d_0} < 3$                                                                                                    |  |
| $4\ell$ vertex fit                 |                                                                      |                                                                                                                           |  |
| $\chi^2/\mathrm{ndof}$             | $< 6 (4\mu)$                                                         | $\mu$ ) or < 9 (4 <i>e</i> , 2 <i>e</i> 2 $\mu$ ) 24                                                                      |  |

#### $pp \to 4\ell$ : fiducial definition

| Physics Object Preselection                                                      |                                                                    |  |  |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|
| Muon selection                                                                   | $p_{\rm T} > 5 {\rm GeV},  \eta  < 2.7$                            |  |  |
| Electron selection                                                               | $p_{\rm T} > 7~{ m GeV},  \eta  < 2.47$                            |  |  |
| Quadruplet Selection                                                             |                                                                    |  |  |
| Assign SFOS lepton pairs with smallest                                           |                                                                    |  |  |
| Lepton pairing                                                                   | and second-smallest $ m_{\ell\ell} - m_Z $ as                      |  |  |
|                                                                                  | primary and secondary lepton pair, defining exactly one quadruplet |  |  |
| Lepton kinematics                                                                | $p_{\rm T} > 20/15/10~{\rm GeV}$ for leading three leptons         |  |  |
| Mass window, primary pair                                                        | $50 \text{ GeV} < m_{12} < 106 \text{ GeV}$                        |  |  |
| Mass window, secondary pair $f(m_{4\ell}) < m_{34} < 115 \text{ GeV}$            |                                                                    |  |  |
| Lepton separation $\Delta R_{ij} > 0.1(0.2)$ for same (opposite) flavour leptons |                                                                    |  |  |
| $J/\psi$ veto                                                                    | $m_{ij} > 5$ GeV for all SFOS pairs                                |  |  |
| Mass interval of measurement $70 \text{ GeV} < m_{4\ell} < 1200 \text{ GeV}$     |                                                                    |  |  |

#### $pp \to 4\ell$ : secondary dilepton mass

Piecewise definition of lower mass requirement of secondary dilepton:

$$f(m_{4\ell}) = \begin{cases} 5\text{GeV}, & \text{for } m_{4\ell} < 100\text{GeV} \\ 5\text{GeV} + 0.7 \times (m_{4\ell} - 100\text{GeV}), & \text{for } 100\text{GeV} < m_{4\ell} < 110\text{GeV} \\ 12\text{GeV}, & \text{for } 110\text{GeV} < m_{4\ell} < 140\text{GeV} \\ 12\text{GeV} + 0.76 \times (m_{4\ell} - 140\text{GeV}), & \text{for } 140\text{GeV} < m_{4\ell} < 190\text{GeV} \\ 50\text{GeV}, & \text{for } m_{4\ell} > 190\text{GeV} \end{cases}$$

#### $pp \rightarrow 4\ell$ : matrix-element discriminant

$$D_{\text{ME}} = \text{log}_{10} \frac{\tilde{M}_{gg \to H^{(*)} \to ZZ^{(*)} \to 4\ell}^{2} \left( p_{1,2,3,4}^{\mu} \right)}{\tilde{M}_{gg \left( \to H^{(*)} \right) \to ZZ^{(*)} \to 4\ell}^{2} \left( p_{1,2,3,4}^{\mu} \right) + 0.1 \cdot \tilde{M}_{q\bar{q} \to ZZ^{(*)} \to 4\ell}^{2} \left( p_{1,2,3,4}^{\mu} \right)}$$

where

$$\tilde{M}_{X}^{2}\left(p_{1,2,3,4}^{\mu}\right)=\frac{\left|\mathcal{M}_{X}\right|^{2}\left(p_{1,2,3,4}^{\mu}\right)}{\left\langle \left|\mathcal{M}_{X}\right|^{2}\right\rangle\left(m_{4\ell}\right)}$$

The matrix elements are evaluated at LO with MCFM 8.0

#### $pp \to 4\ell {:}~Z \to 4\ell$ branching ratio

| Measurement                             | ${\cal B}_{Z 	o 4\ell}/10^{-6}$                                                             |
|-----------------------------------------|---------------------------------------------------------------------------------------------|
| ATLAS, $\sqrt{s} = 7$ TeV and 8 TeV [8] | $4.31 \pm 0.34 (stat) \pm 0.17 (syst)$                                                      |
| CMS, $\sqrt{s} = 13$ TeV [6]            | $4.83^{+0.23}_{-0.22}$ (stat) $^{+0.32}_{-0.29}$ (syst) $\pm 0.08$ (theo) $\pm 0.12$ (lumi) |
| $ m ATLAS,  \sqrt{s} = 13  TeV$         | $4.70 \pm 0.32 ({ m stat}) \pm 0.21 ({ m syst}) \pm 0.14 ({ m lumi})$                       |

## $Z(\rightarrow \nu\nu)\gamma$ : fiducial definition

| Photons                                                                                                                                                                                             | Leptons                             | Jets                                 |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------|--|
| $E_{\rm T} > 150 {\rm ~GeV}$                                                                                                                                                                        | $p_{\rm T} > 7 {\rm ~GeV}$          | $p_{\rm T} > 50~{\rm GeV}$           |  |
| $ \eta  < 2.37,$                                                                                                                                                                                    | $ \eta  < 2.47(2.7)$ for $e(\mu)$ , | $ \eta  < 4.5$                       |  |
| excluding $1.37 <  \eta  < 1.52$                                                                                                                                                                    | excluding $1.37 <  \eta^e  < 1.52$  | $\Delta R(\text{jet}, \gamma) > 0.3$ |  |
| Event selection                                                                                                                                                                                     |                                     |                                      |  |
| $N^{\gamma} = 1,  N^{e,\mu} = 0,  E_{\rm T}^{\rm miss} > 150 \text{ GeV},  E_{\rm T}^{\rm miss} \text{ signif.} > 10.5 \text{ GeV}^{1/2},  \Delta \phi(\vec{E}_{\rm T}^{\rm miss}, \gamma) > \pi/2$ |                                     |                                      |  |
| Inclusive : $N_{\text{jet}} \ge 0$ , Exclusive : $N_{\text{jet}} = 0$                                                                                                                               |                                     |                                      |  |

#### $Z(\rightarrow \nu\nu)\gamma$ : extended fiducial definition

| Category | Requirement                                                           |
|----------|-----------------------------------------------------------------------|
| Photons  | $E_{\rm T}^{\gamma} > 150 { m ~GeV}$                                  |
|          | $ \eta  < 2.37$                                                       |
| Jets     | $ \eta  < 4.5$                                                        |
|          | $p_{\rm T} > 50 { m ~GeV}$                                            |
|          | $\Delta R({ m jet},\gamma)>0.3$                                       |
|          | Inclusive : $N_{\text{jet}} \ge 0$ , Exclusive : $N_{\text{jet}} = 0$ |
| Neutrino | $p_{\rm T}^{\nu\nu} > 150 { m ~GeV}$                                  |

 $Z(\rightarrow \nu\nu)\gamma$ : yields

|                             | $N_{jets} \ge 0$      | $N_{\rm jets} = 0$    |
|-----------------------------|-----------------------|-----------------------|
| $N^{W\gamma}$               | $650 \pm 40 \pm 60$   | $360 \pm 20 \pm 30$   |
| $N^{\gamma+\mathrm{jet}}$   | $409 \pm 18 \pm 108$  | $219 \pm 10 \pm 58$   |
| $N^{e \to \gamma}$          | $320 \pm 15 \pm 45$   | $254 \pm 12 \pm 35$   |
| $N^{\text{jet} \to \gamma}$ | $170 \pm 30 \pm 50$   | $140 \pm 20 \pm 40$   |
| $N^{Z(\ell\ell)\gamma}$     | $40 \pm 3 \pm 3$      | $26 \pm 3 \pm 2$      |
| $N_{ m total}^{ m bkg}$     | $1580 \pm 50 \pm 140$ | $1000 \pm 40 \pm 90$  |
| N <sup>sig</sup> (exp)      | $2328 \pm 4 \pm 135$  | $1710 \pm 4 \pm 91$   |
| $N_{ m total}^{ m sig+bkg}$ | $3910 \pm 50 \pm 190$ | $2710 \pm 40 \pm 130$ |
| $N^{\rm data}({\rm obs})$   | 3812                  | 2599                  |

#### $Z(\rightarrow \nu\nu)\gamma$ : integrated cross sections



Extrapolated to simplified "extended fiducial region"