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Triboson at the LHC
Recently, both ATLAS and CMS released new triboson results


using pp collision data with √s = 13 TeV

https://atlas.cern/updates/physics-briefing/evidence-three-massive-vector-boson-production
Submitted to 

PLB
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WWW WVZ
Categorize based on VVV



Alexander Tuna

Analysis approach
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WWW WVZ
Categorize based on VVV

Categorize further based on boson decays

WWW →ℓνℓνqq

WWW →ℓνℓνℓν

WWZ →ℓνqqℓℓ

WZZ →ℓνqqℓℓ

WZZ →qqℓℓℓℓ

WWZ →ℓνℓνℓℓ

Let’s go through two categories in detail
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Two same-sign leptons

WWW → ℓνℓνqq
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WWW categories target decays with good S/B (emphasis on B)

Two same-sign leptons is an otherwise rare occurrence in SM

Missing energy via two ν’s

Two jets from W decay
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Two same-sign leptons
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WWW → ℓνℓνqq
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WWW: expect a bump 
at m(jj) ~ m(W)

No such m(jj) resonance 
for backgrounds
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WZ: leptonic decays 
and a lost lepton
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“Non-prompt” leptons: 
Mostly via ttbar
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γ conversions:  
Mostly via Wγ

mis-ID’d 
as e
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WWW → ℓνℓνqq
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WWZ → eνμνℓℓ

Two different-flavor leptons

Missing energy via two ν’s

Two leptons from Z decay

WVZ categories target final states with Z→ℓℓ
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Dominant backgrounds: SM processes which also contain Z→ℓℓ,

e.g. WZ→ℓνℓℓ and ZZ→ℓℓℓℓ
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WWZ → eνμνℓℓ
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WWZ → eνμνℓℓ
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Z(ℓℓ)Z(ττ): 

Stronger correlation between 


leptons from τ decays

WWZ→eνμνℓℓ:

Weak correlation between 

leptons from W decays
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ttZ and tWZ: Tend to have 

additional jets in the event

WWZ→eνμνℓℓ:

Tends to not have 

additional jet activity

ttZ and ttW production in ATLAS at 13 TeV, trilepton and dilepton channels Olga Bessidskaia Bylund

1. Introduction

Figure 1: Example Feynman diagrams for tt̄Z production, giving a trilepton signature (left) and tt̄W pro-
duction, giving a same-sign dimuon singature (right).

The production of a top quark pair in association with a Z or W boson was first observed in
proton-proton collisions at

p
s = 8 TeV by CMS [1] and by ATLAS [2], [3] in 2014. Measuring

the processes at higher energies and with greater precision would test the Standard Model and
constrain any new physics that could contribute to these processes. From the fine-tuning problem,
it is of interest to study the production of top quarks together with heavy bosons, aiming to gain
a better understanding of electroweak symmetry breaking. Measuring tt̄Z production allows one
to constrain new physics that would modify the tt̄Z vertex. Some models with a heavy top quark
partner [4] have signatures similar to tt̄W . Additionally, tt̄Z and tt̄W form major backgrounds for
many searches for new physics.

The first measurement by ATLAS at
p

s = 13 TeV with an integrated luminosity of 3.2 fb�1

is presented here, outlining the analysis in the trilepton and same sign-dimuon channels only. Ex-
ample Feynman diagrams for the processes, giving a trilepton or same-sign dimuon signature, are
shown in Fig. 1. Moreover, a tetralepton selection is used for the tt̄Z measurement and the results
quoted here concern the combination with the tetralepton channel. The full analysis is described in
greater detail in Ref. [5].

2. Signal regions

To increase the sensitivity to the tt̄Z and tt̄W cross sections, the trilepton channel is split
by multiplicity of jets and b-tagged jets into four regions. Three of these regions are separately
optimised for tt̄Z and the fourth for tt̄W . In the three regions that target tt̄Z, a requirement is
imposed on the presence of a lepton pair of opposite-sign charge and same flavour (OSSF) with an
invariant mass within 10 GeV of the Z-boson mass. The trilepton region targeting tt̄W instead has
a veto against such an OSSF pair. The definition of the trilepton selections are shown in Table 1.

Moreover, a dilepton region with two muons of the same charge (2µ � SS) is used and op-
timised for tt̄W . Requirements of at least two b-tagged jets, muon pT above 25 GeV, a missing
transverse energy of at least 40 GeV and scalar transverse energy sum HT above 240 GeV are
applied to increase the sensitivity.

1
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Analysis approach
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Combination
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Measured cross-section
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Incompatibility 
with the 


“no-triboson” 
hypothesis:


3.3σ (WWW), 
2.9σ (WVZ),

4.0σ (VVV)
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ranked by importance

Sherpa: large uncertainty of 

WZ renormalisation scale 


(WWW and WVZ)

Significant uncertainties 
from data-driven prediction 

of non-prompt (WWW)

{

Remaining uncertainties: 

a mix of exp. and theory
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All bins in all categories, 
ordered by S/B
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Summary

ATLAS measured triboson VVV for the first time at √s = 13 TeV

The measured cross-section is consistent with 

Standard Model expectation

This analysis includes roughly 
half of the Run 2 ATLAS dataset 
— stay tuned for a new result 

with the entire dataset
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Bonus
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Uncertainty source �µWV V

Data-driven +0.14 –0.14
Theory +0.15 –0.13
Instrumental +0.12 –0.09
MC stat. uncertainty +0.06 –0.04
Generators +0.04 –0.03

Total systematic uncertainty +0.30 –0.27

Decay channel
Significance

Observed Expected

WWW combined 3.2� 2.4�
WWW ! `⌫`⌫qq 4.0� 1.7�
WWW ! `⌫`⌫`⌫ 1.0� 2.0�

WV Z combined 3.2� 2.0�
WV Z ! `⌫qq`` 0.5� 1.0�
WV Z ! `⌫`⌫``/qq```` 3.5� 1.8�

WV V combined 4.1� 3.1�
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WWW ! `⌫`⌫qq WWW ! `⌫`⌫`⌫

Lepton Two leptons with pT >
27(20)GeV and one same-sign
lepton pair

Three leptons with pT >
27(20, 20)GeV and no same-
flavour opposite-sign lepton pairs

m`` 40 < m`` < 400GeV �
Jets At least two jets with pT >

30(20)GeV and |⌘| < 2.5
�

mjj mjj < 300GeV �
�⌘jj |�⌘jj | < 1.5 �
Emiss

T Emiss
T > 55GeV (only for ee) �

Z boson veto mee < 80GeV or mee > 100GeV (only for ee and µee)
Lepton veto No additional lepton with pT > 7GeV and |⌘| < 2.5
b-jet veto No b-jets with pT > 25GeV and |⌘| < 2.5
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WWW ! `⌫`⌫qq WWW ! `⌫`⌫`⌫

Lepton Two leptons with pT >
27(20)GeV and one same-sign
lepton pair

Three leptons with pT >
27(20, 20)GeV and no same-
flavour opposite-sign lepton pairs

m`` 40 < m`` < 400GeV �
Jets At least two jets with pT >

30(20)GeV and |⌘| < 2.5
�

mjj mjj < 300GeV �
�⌘jj |�⌘jj | < 1.5 �
Emiss

T Emiss
T > 55GeV (only for ee) �

Z boson veto mee < 80GeV or mee > 100GeV (only for ee and µee)
Lepton veto No additional lepton with pT > 7GeV and |⌘| < 2.5
b-jet veto No b-jets with pT > 25GeV and |⌘| < 2.5

WV Z ! `⌫qq`` WV Z ! `⌫`⌫``/qq````

Z boson At least one OS lepton pair with |m`` � 91.2GeV| < 10GeV

Low mass veto m`` > 12GeV for any OS lepton pair

b-jet veto No b-jets with pT > 25GeV and |⌘| < 2.5

Leptons One additional nominal lepton One additional OS lepton pair;

third and fourth lepton nominal

HT HT > 200GeV –
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WZ control region

Three nominal leptons with one SFOS pair

No b-tagged jets

E
miss
T > 55 GeV

m``` > 110 GeV

W sideband validation region
Same as the WWW ! `⌫`⌫qq SR, with

mjj < 50 GeV or mjj > 120 GeV

tt̄Z control region

Same as the 3`-3j SR region, except:

no requirement on HT,

at least four jets,

at least two b-tagged jets.

WZ+jets and Z+jets validation regions

Same as the 3`-1j SR region, except:

no requirement on HT;

third-highest-pT lepton has 10 GeV < pT < 15 GeV;

m``` < 150 GeV.
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Variable 3`-1j 3`-2j 3`-3j 4` DF 4` SF 4` SF

on-shell o↵-shell

pT(`1) ⇥ ⇥
pT(`2) ⇥ ⇥ ⇥
pT(`3) ⇥ ⇥ ⇥
Sum of pT(`) ⇥ ⇥ ⇥
m`1`2 ⇥ ⇥
m`1`3 ⇥ ⇥
m`2`3 ⇥ ⇥
m`` of best Z ⇥ ⇥
m`` of other leptons ⇥ ⇥ ⇥
m3` ⇥ ⇥ ⇥
m4` ⇥ ⇥ ⇥
Sum of lepton charges ⇥ ⇥ ⇥
pT(j1) ⇥ ⇥
pT(j2) ⇥ ⇥
Sum of pT(j) ⇥
Number of jets ⇥ ⇥ ⇥ ⇥
mj1j2 ⇥
mT(W`) ⇥
mjj of best W ⇥
Smallest mjj ⇥
E

miss
T ⇥ ⇥ ⇥ ⇥ ⇥

HT ⇥ ⇥ ⇥ ⇥
Leptonic HT ⇥
Hadronic HT ⇥
Invariant mass of all

leptons, jets and E
miss
T ⇥ ⇥

Invariant mass of the

best Z leptons and j1 ⇥
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13 TeV

Today’s result 

80 fb-1 of 13 TeV pp data 

(2015-2017)
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The ATLAS Detector
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