Evidence for triboson production at ATLAS

Alex Tuna

(Harvard University)

on behalf of the ATLAS collaboration

EPS-HEP2019 13 July

Context

Massive tribosons VVV not yet observed

Sensitive to anomalous triple/quartic gauge couplings, and also new heavy particles decaying to bosons

Triboson at the LHC

Recently, both ATLAS and CMS released new triboson results using pp collision data with $\sqrt{s} = 13$ TeV

ATLAS finds evidence of three massive vector boson production

By ATLAS Collaboration, 17th March 2019

https://atlas.cern/updates/physics-briefing/evidence-three-massive-vector-boson-production

Submitted to PLB

80 fb⁻¹

	CMS Physics Analysis Summaries
Report number	CMS-PAS-SMP-17-013
Title	Search for the production of WWW events with two equally charged or three leptons at sqrt(s) = 13 TeV
Corporate author(s)	CMS Collaboration
Collaboration	CMS Collaboration
Subject category	Particle Physics - Experiment

Analysis

Analysis approach

Categorize based on VVV

WWW

WVZ

Analysis approach

Categorize based on VVV

WWW

Categorize further based on boson decays

WWW → ℓvℓvqq

WWW → ℓvℓvℓv

WWZ → ℓvqqℓℓ

WZZ → ℓvqqℓℓ

WZZ →qqℓℓℓℓ

WWZ → ℓvℓvℓℓ

Let's go through two categories in detail

WWW categories target decays with good S/B (emphasis on B)

Two same-sign leptons is an otherwise rare occurrence in SM

WWW categories target decays with good S/B (emphasis on B)

Two same-sign leptons is an otherwise rare occurrence in SM

WWW categories target decays with good S/B (emphasis on B)

Two same-sign leptons is an otherwise rare occurrence in SM

Good agreement between data and prediction

Signal hypothesis is favored given the data near m(jj) ~ 80 GeV

WVZ categories target final states with $Z \rightarrow \ell \ell$

Dominant backgrounds: SM processes which also contain $Z \rightarrow \ell \ell$, e.g. $WZ \rightarrow \ell \nu \ell \ell$ and $ZZ \rightarrow \ell \ell \ell \ell$

WVZ categories target final states with $Z \rightarrow \ell \ell$

Dominant backgrounds: SM processes which also contain $Z \rightarrow \ell \ell$, e.g. $WZ \rightarrow \ell \nu \ell \ell$ and $ZZ \rightarrow \ell \ell \ell \ell$

WVZ categories target final states with $Z \rightarrow \ell \ell$

Dominant backgrounds: SM processes which also contain $Z \rightarrow \ell \ell$, e.g. $WZ \rightarrow \ell \nu \ell \ell$ and $ZZ \rightarrow \ell \ell \ell \ell$

WWZ→evµvℓℓ: Weak correlation between leptons from W decays

 $Z(\ell\ell)Z(\tau\tau)$: Stronger correlation between leptons from τ decays

WWZ→evµvℓℓ: Tends to not have additional jet activity

ttZ and tWZ: Tend to have additional jets in the event

Analysis approach

Good agreement between data and prediction

Signal hypothesis is favored given the data with BDT response ~ 1

Combination

Measured cross-section

Incompatibility
with the
"no-triboson"
hypothesis:
3.3σ (WWW),
2.9σ (WVZ),
4.0σ (VVV)

Uncertainties

ranked by importance

Sherpa: large uncertainty of WZ renormalisation scale (WWW and WVZ)

Significant uncertainties from data-driven prediction of non-prompt (WWW)

Remaining uncertainties: a mix of exp. and theory

Triboson in 1 plot

Summary

ATLAS measured triboson VVV for the first time at $\sqrt{s} = 13$ TeV

The measured cross-section is consistent with Standard Model expectation

This analysis includes roughly half of the Run 2 ATLAS dataset

stay tuned for a new result with the entire dataset

Bonus

Uncertainty source	$\Delta \mu_{WVV}$		
Data-driven	+0.14	-0.14	
Theory	+0.15	-0.13	
Instrumental	+0.12	-0.09	
MC stat. uncertainty	+0.06	-0.04	
Generators	+0.04	-0.03	
Total systematic uncertainty	+0.30	-0.27	

Dogov channol	Significance		
Decay channel	Observed	Expected	
WWW combined	3.2σ	2.4σ	
$WWW o \ell u \ell u qq$	4.0σ	1.7σ	
$WWW \to \ell\nu\ell\nu\ell\nu$	1.0σ	2.0σ	
WVZ combined	3.2σ	2.0σ	
$WVZ o \ell u qq\ell\ell$	0.5σ	1.0σ	
$WVZ \rightarrow \ell \nu \ell \nu \ell \ell / qq \ell \ell \ell \ell$	3.5σ	1.8σ	
WVV combined	4.1σ	3.1σ	

	$\mid WWW \rightarrow \ell\nu\ell\nu qq$	$\mid WWW \to \ell\nu\ell\nu\ell\nu$		
Lepton	Two leptons with $p_{\rm T}$ >	$\overline{\mid}$ Three leptons with p_{T} >		
	27(20) GeV and one same-sign	27(20,20) GeV and no same-		
	lepton pair	flavour opposite-sign lepton pairs		
$m_{\ell\ell}$	$40 < m_{\ell\ell} < 400 \text{GeV}$			
Jets	At least two jets with p_{T} >			
	$30(20) GeV \text{ and } \eta < 2.5$			
m_{jj}	$m_{ij} < 300 \text{GeV}$			
$\Delta \eta_{jj}$	$ \Delta \eta_{jj} < 1.5$			
$E_{ m T}^{ m miss}$	$E_{\rm T}^{\rm miss} > 55 {\rm GeV} ({\rm only for}ee)$	_		
Z boson veto	$m_{ee} < 80 \mathrm{GeV}$ or $m_{ee} > 100 \mathrm{GeV}$ (only for ee and μee)			
Lepton veto	No additional lepton with $p_{\rm T} > 7{\rm GeV}$ and $ \eta < 2.5$			
b-jet veto	No b-jets with $p_{\rm T} > 25{\rm GeV}$ and $ \eta < 2.5$			

	$WWW \to \ell\nu\ell\nu qq$	$WWW \to \ell\nu\ell\nu\ell\nu$		
Lepton	Two leptons with $p_{\rm T}$ >	$\overline{\mid}$ Three leptons with p_{T} >		
	27(20) GeV and one same-sign	27(20,20) GeV and no same-		
	lepton pair	flavour opposite-sign lepton pairs		
$m_{\ell\ell}$	$40 < m_{\ell\ell} < 400 \text{GeV}$			
Jets	At least two jets with p_{T} >			
	$30(20) GeV \text{ and } \eta < 2.5$			
m_{jj}	$m_{ij} < 300 \text{GeV}$			
$\Delta \eta_{jj}$	$ \Delta \eta_{jj} < 1.5$			
$E_{ m T}^{ m miss}$	$E_{\rm T}^{\rm miss} > 55 {\rm GeV} ({\rm only for}ee)$			
Z boson veto	$m_{ee} < 80 \text{GeV or} \ m_{ee} > 100$	$0 \text{ GeV (only for } ee \text{ and } \mu ee)$		
Lepton veto	No additional lepton with	$p_{ m T} > 7{ m GeV}$ and $ \eta < 2.5$		
<i>b</i> -jet veto	No b-jets with $p_{\mathrm{T}} > 25\mathrm{GeV}$ and $ \eta < 2.5$			

	$WVZ \rightarrow \ell \nu q q \ell \ell$	$\mid WVZ \to \ell\nu\ell\nu\ell\ell/qq\ell\ell\ell\ell$		
\overline{Z} boson	At least one OS lepton pair with $ m_{\ell\ell} - 91.2\mathrm{GeV} < 10\mathrm{GeV}$			
Low mass veto	$m_{\ell\ell} > 12 \mathrm{GeV}$ for	any OS lepton pair		
<i>b</i> -jet veto	No b -jets with $p_{\mathrm{T}} >$	$25\mathrm{GeV}$ and $ \eta < 2.5$		
Leptons	One additional nominal lepton	One additional OS lepton pair;		
		third and fourth lepton nominal		
$H_{ m T}$	$H_{ m T} > 200{ m GeV}$			

WZ control region	Three nominal leptons with one SFOS pair No b -tagged jets $E_{\rm T}^{\rm miss} > 55~{\rm GeV}$ $m_{\ell\ell\ell} > 110~{\rm GeV}$			
W sideband validation region	Same as the $WWW \to \ell\nu\ell\nu qq$ SR, with $m_{jj} < 50$ GeV or $m_{jj} > 120$ GeV			
$tar{t}Z$ control region	Same as the 3ℓ -3j SR region, except: no requirement on $H_{\rm T},$ at least four jets, at least two b -tagged jets.			
WZ+jets and Z +jets validation regions	Same as the 3 ℓ -1j SR region, except: no requirement on $H_{\rm T};$ third-highest- $p_{\rm T}$ lepton has 10 GeV $< p_T <$ 15 GeV; $m_{\ell\ell\ell} <$ 150 GeV.			

Variable	3 <i>ℓ</i> -1j	3 <i>ℓ</i> -2j	3 <i>ℓ</i> -3j	4ℓ DF	4ℓ SF on-shell	4ℓ SF off-shell
$p_{ m T}(\ell_1)$	×	×				
$p_{\mathrm{T}}(\ell_2)$	×	×	×			
$p_{ m T}(\ell_3)$	×	×	×			
Sum of $p_{\mathrm{T}}(\ell)$	×	×	×			
$m_{\ell_1\ell_2}$	×	×				
$m_{\ell_1\ell_3}$	×	×				
$m_{\ell_2\ell_3}$	×	X				
$m_{\ell\ell}$ of best Z					X	×
$m_{\ell\ell}$ of other leptons				×	×	×
$m_{3\ell}$	×	X	×			
$m_{4\ell}$				×	X	×
Sum of lepton charges	×	X	×			
$p_{\mathrm{T}}(j_1)$	×	X				
$p_{ m T}(j_2)$		X	×			
Sum of $p_{\rm T}(j)$			×			
Number of jets			X	×	X	X
$m_{j_1j_2}$		X				
$m_{ m T}(W_\ell)$		×				
m_{jj} of best W			X			
Smallest m_{jj}			X			
$E_{ m T}^{ m miss}$		X	×	×	X	X
$H_{ m T}$	×	X			X	X
Leptonic $H_{\rm T}$				×		
Hadronic $H_{\rm T}$				×		
Invariant mass of all						
leptons, jets and $E_{\mathrm{T}}^{\mathrm{miss}}$	×		×			
Invariant mass of the						
best Z leptons and j_1	×					

The ATLAS Detector

