

EPS-HEP 2019, Ghent, Belgium

12th July 2019

Measurements of tt+jets, ttbb and tttt production in CMS

Sébastien Wertz, for the CMS collaboration

tt+jets production: the basics

CMS

- Abundance of extra jets in tt production (ISR, FSR)
- Background to searches and measurements
 - → important to model accurately & precisely
- Interplay of parton shower, multi-parton matrix elements, matching & merging schemes
 - → need validation with measurements
- CMS measurements (2016 data, 36 fb⁻¹): jet multiplicity, additional jet properties

 Trend of lower multiplicity in data (within uncertainties) than in Powheg+Pythia8, good agreement up to 3 extra jets

ttbb production: the next level

- ttbb not just a subset of ttjj: unique modelling challenges!
 - Non-negligible b quark mass: multiple massive partons
 - Different scales in process (tt and bb systems)
- Different modelling approaches:
 - NLO tt ME + PS, 5FS
 - Merged NLO $t\bar{t}$ + 0/1/2 jets ME + PS, 5FS
 - NLO ttbb ME + PS, 4FS

Models (mostly) in agreement, but large uncertainties

- \rightarrow Leading systematic for $t\bar{t}H(b\bar{b})$, $t\bar{t}t\bar{t}$
- → Need measurements

ME = Matrix Element, PS = Parton Shower

5FS = 5-flavour scheme, massless b quarks (inside PDFs)

4FS = 4-flavour scheme, massive b quarks

Previous 13 TeV CMS result: 1705.10141

- Dilepton final state, 2015 data (2.3 fb⁻¹)
- Inclusive ttbb cross section, ttbb/ttjj ratio
- 35% precision, $\sigma/\sigma_{th} \sim 1.25$

ttbb cross section: all-jet final state

NEWI

Fully-hadronic channel: 8 jets, of which 4 b jets

- 2016 data, 36 fb-1
- → largest branching fraction (45%) & fully reconstructible final state
- Select events with ≥ 8 jets, ≥ 2 b-tagged jets
- Suffers from:
 - Combinatorial self-background

"Permutation" BDT:

- Trained to identify jets from tt decays
- ~60% correct (if all jets reconstructed)
- Keep permutation with highest score

ttbb cross section: all-jet final state

2016 data, 36 fb-1

- Fully-hadronic channel: 8 jets, of which 4 b jets
 - → largest branching fraction (45%) & fully reconstructible final state
- Select events with ≥ 8 jets, ≥ 2 b-tagged jets
- Suffers from:
 - QCD multijet background

Quark-gluon likelihood ratio (QGLR):

- QCD multijet: more gluon jets

QCD rejection BDT:

- Uses classification without labels (CWoLa)
- Trained using data with =7 jets

 Extract signal using b tagging (CSV) discriminant of two <u>extra</u> jets with highest score:

- Estimate QCD contribution: "bin-wise ABCD"
- QGLR and CWoLa BDT uncorrelated
- For each bin: $N^{SR} = N^{CR3} N^{CR1}/N^{CR2}$

NEW!

- Extract signal using b tagging (CSV) discriminant of two <u>extra</u> jets with highest score:
- Estimate QCD contribution: "bin-wise ABCD"
- QGLR and CWoLa BDT uncorrelated
- For each bin: $N^{SR} = N^{CR3} N^{CR1}/N^{CR2}$

Cross section measured for three phase spaces:

Visible, Parton Agnostic (PA):

≥ 8 jets

≥ 4 b jets

Visible, Parton Based (PB):

≥ 8 jets

≥ 4 b jets, of which ≥ 2 not coming from top decays

Full:

≥ 2 b jets not coming from top decays

(particle-level jets with $p_{T}>20$ GeV and $|\eta|<2.4$)

Systematic uncertainties (in %):

Source	VPS (PA)	
Simulated sample size	+15/-11	1
Quark-gluon likelihood	+13/-8	
b tagging	± 10	
JES & JER	+5.1/-5.2	•
Integrated luminosity	+2.8/-2.2	
Trigger efficiency	+2.6/-2.1	
Pileup	+2.3/-2.0	
$\mu_{\rm R}$ and $\mu_{\rm F}$ scales	+13/-9	Z
Parton shower scale	+11/-8	Modelling
UE tune	+9.0/-5.3	: ≝
Colour reconnection	± 7.2	gn
Shower matching (h_{damp})	+4.3/-2.8	
ttcc normalisation	+3.2/-4.4	
Top quark $p_{\rm T}$ modelling	± 2.5	
PDFs	+2.2/-2.0	

Results:

- Under-predictions of all generators by factor ~1.5
- Consistent with previous results
- Note: NNLO K-factor not applied (1.1-1.15)

tttt production: LHC goes to eleven

- Rare SM process: $\sigma = 12\pm 2$ fb (NLO QCD + EWK)
- Probe top quark Yukawa coupling y_t
- Cross section can be enhanced in numerous BSM scenarios
 - 2HDMs, dark matter mediator, EFT, ...

- "High" rate, low purity
- Main background: $t\bar{t}$ + (b) jets

Low rate, high purity

gallele

 Main backgrounds: ttW, ttZ (+ b jets!), ttH, nonprompt leptons

2016 data, 36 fb⁻¹

1 lepton:

- \geq 7 jets (μ^{\pm}), \geq 8 jets (e^{\pm})
- ≥ 2 b-tagged jets

Hadronic top quark BDT:

- Identify 3-jet combinations: top quark decays
- Uses 2- and 3-jet inv. masses, angles, b tagging
- Trained using tt+jets simulation
- Use largest (2l), 2nd largest (1l) scores

2 OS leptons:

- $\mu^+\mu^-$, e⁺e⁻: veto Z peak
- ≥ 4 jets, ≥ 2 b-tagged jets

BDTs for sig/bkg discrimination:

- Use trijet discriminants, event hadronic activity, event topology, lepton kinematics...
- Several BDTs trained (lepton flavours, jet bins)
- Extract signal: BDT shape in jet and b-tag multiplicity bins

Systematic uncertainties: dominated by tt+jets modelling

- Jet multiplicity correction, from single-lepton channel
- Extra 35% uncertainty on ttbb rate, taken from measurement (older dilepton CMS result)
- Parton shower scale, underlying event tune

Results:

	single lepton	dilepton	combined
Exp./obs. Significance (σ)*	0.21/0.36	0.36/0.00	0.40/0.00
Exp./obs. limit on signal strength*	9.4/10.6	7.3/6.9	5.7/5.2

- Sensitivity dominated by dilepton channels
- Comparable statistical and systematic uncertainties

Also EFT reinterpretation: see Kirill's talk!

* Note: based on $\sigma_{t\bar{t}t\bar{t}}$ = 9 fb (NLO QCD)

Uses full Run 2 dataset: 137 fb⁻¹

Baseline selection:

- ≥ 2 jets, ≥ 2 b-tagged jets
- 2 SS leptons
- Advanced lepton identification & isolation criteria
- If present, 3rd lepton (low p_T)
 - \rightarrow to ttZ control region if same-flavour m(II) close to Z peak

- 14 Signal Regions (SRs), based on number of jets, leptons, b-tagged jets
- ttZ and ttW-enriched control regions (CRZ, CRW)

- Shape of BDT (17 SRs)
- ttZ-enriched control region (CRZ)

Background estimation

Prompt leptons: ttW, ttZ, ttH(WW)

- Simulation + control regions (for ttV)
- Jet multiplicity correction for ttV (from dilepton tt measurement)
- Correction for additional b jets, from measured ttbb/ttjj ratio (older dilepton CMS result)

Nonprompt leptons:

- tt+jets \rightarrow nonprompts, γ conversions, jet mis-ID'd as lepton
- Invert ID & isolation
- Mistag rate measured in single-lepton sample

Lepton charge flips:

- Negligible for muons
- Electrons: simulation corrected using Z(e⁺e⁻) events

PAS-TOP-18-003

Dominant systematic uncertainties:

- ttbb/ttjj ratio
- Jet energy scale & resolution, b tagging
- ttH normalisation

Results:

	$\sigma_{ m tar{t}tar{t}}$ (fb)	Significance (exp/obs.)
Cut based	9.4 ^{+6.2} _{-5.6}	2.5/1.7
BDT based	12.6+5.8	2.7/2.6

PAS-TOP-18-003

Dominant systematic uncertainties:

- ttbb/ttjj ratio
- Jet energy scale & resolution, b tagging
- ttH normalisation

Results:

	$\sigma_{ m tar{t}tar{t}}$ (fb)	Significance (exp/obs.)
Cut based	9.4 ^{+6.2} _{-5.6}	2.5/1.7
BDT based	12.6+5.8	2.7/2.6

Reinterpretation:

- Top quark Yukawa coupling: $|y_t/y_{SM}| < 1.7 @ 95\%$ CL → take into account effect on $t\bar{t}H$ background
- (Pseudo)scalar A/H $\rightarrow t\bar{t}$

Conclusions

Extensive activity by CMS on tt production with additional coloured objects

- Important validation of additional jets modelling
- Increasing precision on ttbb production
- Closing in on four top quark production

Differential measurements of ttbb and tttt searches not yet systematics-limited

→ will profit from full Run 2 dataset, upcoming Run 3: stay tuned!

Conclusions

Extensive activity by CMS on tt production with additional coloured objects

- Important validation of additional jets modelling
- Increasing precision on ttbb production
- Closing in on four top quark production

Feeds in

Differential measurements of ttbb and tttt searches not yet systematics-limited

→ will profit from full Run 2 dataset, upcoming Run 3: stay tuned!

Thank you!

Back-up

tt+jets production

- Sherpa: 1st extra jet at NLO, up to 4 jets at LO + Catani-Seymour parton shower
- MG5_aMC@NLO: up to 2 jets at NLO, FxFx merging

Jet multiplicity for jet p_T > 100 GeV

Jet multiplicity for jet $p_T > 50 \text{ GeV}$

tt+jets production

TOP-17-002

1st (left) and 2nd (right) gap fraction:

Fraction of events with less than n extra jets above pT threshold

2nd extra jet |η|

Angular separation between 2nd extra jet and closest jet from hadronic top quark decay

ttbb cross section: all-jet final state

PAS-TOP-18-011

Cross section measured for three phase spaces:

Visible, Parton Agnostic (PA):

- ≥ 8 jets with pT > 20 Gev, ofwhich ≥ 6 with pT > 30 GeV
- ≥ 4 b jets

Visible, Parton Based (PB):

- ≥ 8 jets with pT > 20 Gev, of which ≥ 6 with pT > 30 GeV
- ≥ 4 b jets, of which ≥ 2 not coming from top decays

Full:

≥ 2 b jets with pT > 20 GeV, not coming from top decays

- Event selection:
 - ≥ 8 jets with pT > 30 Gev, of which ≥ 6 with pT > 40 GeV
 - ≥ 2 b-tagged jets
 - HT > 500 GeV
 - $P(Chi2) < 1e-6 \quad \chi^2 = (M(j_1, j_3, j_4) m_t)^2 / \sigma_t^2 + (M(j_3, j_4) m_W)^2 / \sigma_W^2$ $+ (M(j_2, j_5, j_6) m_t)^2 / \sigma_t^2 + (M(j_5, j_6) m_W)^2 / \sigma_W^2$
 - QGLR: $L(4, 0)/(L(4, 0) + L(0, 4)) \leftrightarrow$ on average 4 quark jets in tt events

$$L(N_{q}, N_{g}) = \sum_{\text{perm}} \left(\prod_{k=i_{1}}^{i_{N_{q}}} \prod_{k=i_{N_{q}+1}}^{i_{N_{q}+N_{g}}} f_{q}(\zeta_{k}) f_{g}(\zeta_{m}) \right)$$

more

- 1708.02949 CWoLa method:
 - 1 signal, 1 background
 - 2 regions with different signal purity
 - Treat 2 regions as "signal" and "background" in training
 - Classifier converges to discriminator for actual signal and background
 - Condition: region definition uncorrelated with input variables
 - Here: signal = tt+jets, background = QCD

ttbb cross section: all-jet final state

PAS-TOP-18-011

ttbb cross section: all-jet final state

TOP-17-019

Jet multiplicities after correction:

PAS-TOP-18-003

<u>Lepton identification</u> crucial:

- Multivariate electron identification
- Advanced isolation requirements
- Reduction of <u>charge flips</u>

- Lepton p_T-dependent isolation cone
- Ratio lepton p_T / closest jet p_T
- Lepton p_T relative to direction of nearby hadronic activity
- <u>Electrons</u>: linear extrapolation of pixel hits to calorimeter, compare with position of energy cluster → should be consistent with track charge
 → charge mis-ID 10⁻³ 10⁻⁵
- Muons: require small p_T uncertainty \rightarrow negligible charge mis-ID

PAS-TOP-18-003

Sum of 14 Signal Regions (cut-based), pre-fit:

PAS-TOP-18-003

ttW, ttZ control regions (pre-fit):

10

Niets

Note: ttW and ttZ cross sections measured to be 23% and 17% larger than SM predictions (within uncertainties):

TOP-17-005

6

 $N_{\rm b}$

PAS-TOP-18-003

Cut-based signal regions:

N_{jets} $N_{\rm b}$ N_ℓ Region **CRW** 6 SR1 2 SR2 7 $\geq \bar{8}$ SR3 SR4 5 SR5 6 3 SR6 SR7 ≥ 4 SR8 SR9 5 **SR10** 6 **SR11** ≥ 3 4 **SR12** ≥ 3 5 SR13 **SR14** > 6inverted Z-veto CRZ

Systematic uncertainties:

		Impact on the
Source	Uncertainty (%)	tttt cross section (%)
Integrated luminosity	2.3–2.5	3
Pileup	0–5	1
Trigger efficiency	2–7	2
Lepton selection	2–10	2
Jet energy scale	1–15	9
Jet energy resolution	1–10	6
b tagging	1–15	6
Size of simulated sample	1–25	<1
Scale and PDF variations †	10–15	2
ISR/FSR (signal) †	5–15	2
ttH (normalization) †	25	5
Rare, $X\gamma$, $t\bar{t}VV$ (norm.) †	11-20	<1
tīZ, tīW (norm.) †	40	3-4
Charge misidentification †	20	<1
Nonprompt leptons †	30–60	3
$N_{ m jets}^{ m ISR/FSR}$ \dagger	1-30	2
$\sigma(t\bar{t}b\bar{b})/\sigma(t\bar{t}jj)$ †	35	11