

Measurements of tt pairs produced in association with electroweak gauge bosons using the ATLAS detector

Alvaro Lopez Solis

On behalf of the ATLAS collaboration

EPS Conference - High Energy Physics 2019
10th - 17th July 2019

The University Of Sheffield.

Overview

- Very successful Run II of the LHC during the last three years (2015-2018) at \sqrt{s} = 13 TeV.
- ATLAS recorded a dataset of 139 fb⁻¹, Around seven times larger than the previous Run I at \sqrt{s} = 8 TeV (20.3 fb⁻¹).
- Reaching $\langle \mu \rangle$ = 33.7 for the combined whole Run II.

Month in Year

Status of ttV and tty measurements

(I will focus today in the latest results published by the ATLAS collaboration using the 2015+2016 recorded data (36.1 fb-1) for tt produced in association with an electroweak boson

ATLAS Top Summary plots

tt7 and ttW- cross-section measurement

Phys. Rev. D 99 (2019) 072009

 $t\bar{t}$ + γ : fiducial and differential cross-section

Eur. Phys. J. C 79 (2019) 382

Updated results with full luminosity (139 fb-1) are in progress

Motivation

- Direct probe of the weak couplings of the top to W/ Z and photons.
- Deviations from the SM model predictions can probe beyond SM scenarios:
 - These final states are sensitive to anomalous couplings of the top and photons and/or tt spin correlation and charge asymmetry amongst others.
- Differential measurements improve Monte-Carlo modelling.
- In addition, these processes are important backgrounds for other SM/BSM searches in ATLAS.

ttH multilepton in ATLAS: PhysRevD.97.072003

Stop pair production in 0 lepton final state: JHEP12(2017)085

Eur. Phys. J. C 79 (2019) 382

$t\bar{t}\gamma$ fiducial and differential cross-section 13 TeV, 36.1 fb⁻¹

Analysis overview

- Targetting semileptonic and dileptonic decays of the ttbar system.
 - tt/Z+jets: jets and electrons faking photons and jets faking electrons.
 - Wγ (Zγ): irreducible background single lepton (dilepton) channel.
- Prompt photon tagger in single lepton channel to discriminate fake photons from prompt.

Channel	Single lepton	Dilepton	
$t\bar{t}\gamma$	6490 ± 420	720 ± 34	
Hadronic-fake	1440 ± 290	49 ± 27	
Electron-fake	1650 ± 170	2 ± 1	
Fake lepton	360 ± 200	_	
W_{γ}	1 130		
Z_{γ}		75 ± 52	
Other prompt	690 ± 260	18 ± 7	
Total	11750 ± 710	863 ± 78	
Data	11 662	902	

- Event level discriminator (ELD) to separate signal and background.
 - Neural network on Keras → Output provide strong discrimination between signal/background.
- Fiducial cross-section measurements fitting ELD shape.

Fiducial cross-section measurement

- Results derived with a shape fit of the ELD in the single-lepton and dilepton channels.
- Individual and combined fits to different flavor channels.
- Results compatible with dedicated NLO in QCD predictions in this fiducial region from authors of arXiv:1102.1967.

$$\sigma_{\text{fid}}^{\text{SL}} = 521 \pm 9(\text{stat.}) \pm 41(\text{sys.}) \text{ fb}$$

$$\sigma_{\rm fid}^{\rm DL} = 69 \pm 3 ({\rm stat.}) \pm 4 ({\rm sys.}) ~{\rm fb}$$

Differential cross-section results

- Iterative Bayesian unfolding technique to obtain particle-level measurements.
- Overall agreement between the unfolded results and the compared generators, modelling ttγ at LO.
 - Largest disagreement → 1.5 σ in the $\Delta \phi(l_{\uparrow},l_{\uparrow})$.
- Modelling of the Powheg+Py8 ttbar sample with promptphoton radiation shows softer photon than in data.

Dominated by tt $(Z\gamma)$ modelling and statistics in single-lepton (dilepton)

Phys. Rev. D 99 (2019) 072009

ttZ and ttW cross-section measurement 13TeV, 36.1fb⁻¹

Analysis overview: *ttW*

- 2 lepton same-sign signal regions (2l-SS):
 - Targetting $W \rightarrow lv$ and semileptonic tt system.
 - Dominated by fake-lepton and charge-flip.
- 3 lepton signal region:
 - Targetting leptonic decays of all W-bosons in the event.
 - Z-veto on opposite sign same flavour leptons.
- Multivariate techniques to reduce fake-lepton backgrounds.
 Data-driven fake-lepton and charge flip estimation.
- Multi-bin fit to all SRs and CRs.

Analysis overview: *ttZ*

- Regions targetting 2L,3L (most sensitive) and 4L (high purity).
- Dedicated control regions for the dominant backgrounds in each channel:
 - 2L: tt and Z+jets. Z+jets sample classified by heavyflavour (b- and c-hadron) mutliplicity.
 - 3L: WZ control region. Other backgrounds from MC.
 - 4L: ZZ control region. Other backgrounds from MC.
- BDT fit to 2L region and multi-bin fit in 3L,4L regions.

Measurement of the ttZ/ttW cross-section

- Combined fit in all signal regions to simultaneous substraction of σ_{ttZ} and σ_{ttW} .
- Substracted values compatible within uncertainties to individual fits.
- Dominated by signal modelling and flavour-tagging/jet uncertainties.

Fit configuration	$\mu_{t\bar{t}Z}$	$\mu_{t\bar{t}W}$
Combined	1.08 ± 0.14	1.44 ± 0.32
2ℓ-OS	0.73 ± 0.28	
$3\ell t\bar{t}Z$	1.08 ± 0.18	
2ℓ -SS and $3\ell t\bar{t}W$		1.41 ± 0.33
4ℓ	1.21 ± 0.29	

Uncertainty	$\sigma_{t\bar{t}Z}$	$\sigma_{t\bar{t}W}$
Luminosity	2.9%	4.5%
Simulated sample statistics	2.0%	5.3%
Data-driven background statistics	2.5%	6.3%
JES/JER	1.9%	4.1%
Flavor tagging	4.2%	3.7%
Other object-related	3.7%	2.5%
Data-driven background normalization	3.2%	3.9%
Modeling of backgrounds from simulation	5.3%	2.6%
Background cross sections	2.3%	4.9%
Fake leptons and charge misID	1.8%	5.7%
ttZ modeling	4.9%	0.7%
tīW modeling	0.3%	8.5%
Total systematic	10%	16%
Statistical	8.4%	15%
Total	13%	22%

Compatible with 68% CL with ttZ/ttW NLO predictions.

Top EFT constraints

- Constraints on 5 Top EFT Wilson coefficients with ATLAS results. Coefficients related only to the ttZ vertex: Reference SMEFT paper
- Using the 3L and 4L signal regions. Discard 2L OS due to its low purity.

Conclusion

- \odot Several results from using 2015 and 2016 ATLAS dataset have been published on $t\bar{t}$ production in association with electroweak bosons.
- ATLAS have published two results with 36.1 fb-1 data:
 - Measurements of inclusive and differential fiducial cross-sections of $t\bar{t}\gamma$ production in leptonic final states at \sqrt{s} = 13 TeV in ATLAS
 - Measurement of the $t\bar{t}Z$ and $t\bar{t}W$ cross sections in proton-proton collisions at \sqrt{s} =13 TeV with the ATLAS detector
- Results compatible with SM predictions
- Moving from inclusive cross-section measurements to differential measurements
- Results with full LHC Run2 dataset are coming soon → Stay tuned!

Additional material

ttγ selection and pre-fit yields

Single lepton and dilepton selections

e+jets	μ+jets	ee	$\mu\mu$	$e\mu$	
	Prim	ary vertex			
1 <i>e</i>	1 μ	2 e, OS	2μ , OS	$1 e + 1 \mu$, OS	
	Trig	ger match			
≥ 4 jets			≥ 2 jets		
$\geq 1 b$ -jet					
		1 γ			
$ m(e, \gamma) - m(Z) > 5 \text{ GeV}$			-		
-		$m(\ell,\ell)$	∉ [85,95] GeV	-	
-	$m(\ell,\ell,\gamma) \notin [85,95] \text{ GeV}$		-		
-		$E_{ m T}^{ m miss}$	s > 30 GeV	-	
$- m(\ell,\ell) > 15 \text{ GeV}$					
	$\Delta R(r)$	$(\gamma, \ell) > 1.0$			

Channel	Single lepton	Dilepton
$t\bar{t}\gamma$	6490 ± 420	720 ± 34
Hadronic-fake	1440 ± 290	49 ± 27
Electron-fake	1650 ± 170	2 ± 1
Fake lepton	360 ± 200	_
W_{γ}	1 130	
$Z\gamma$		75 ± 52
Other prompt	690 ± 260	18 ± 7
Total	11750 ± 710	863 ± 78
Data	11 662	902

Reduce events where photon radiated by top decay products.

Ttγ: event-level discriminator

• Prompt-photon tagger trained with shower shape variables: R_{η} , R_{ϕ} , $w_{\eta 2}$, w_{s3} , R_{had} and F_{side}

Category	Description	Name
Acceptance	$ \eta < 2.37$, with $1.37 < \eta < 1.52$ excluded	_
Hadronic leakage	Ratio of $E_{\rm T}$ in the first sampling layer of the hadronic calorimeter to $E_{\rm T}$ of the EM cluster (used over the range $ \eta < 0.8$ or $ \eta > 1.37$)	
	Ratio of $E_{\rm T}$ in the hadronic calorimeter to $E_{\rm T}$ of the EM cluster (used over the range $0.8 < \eta < 1.37$)	$R_{\rm had}$
EM Middle layer	Ratio of 3×7 $\eta \times \phi$ to 7×7 cell energies	R_{η}
	Lateral width of the shower	w_{η_2}
	Ratio of $3\times3~\eta\times\phi$ to 3×7 cell energies	R_{ϕ}
EM Strip layer	Shower width calculated from three strips around the strip with maximum energy deposit	w_{s3}
	Total lateral shower width	$w_{s \mathrm{tot}}$
	Energy outside the core of the three central strips but within seven strips divided by energy within the three central strips	$F_{\rm side}$

Table 3 Input variables for the event-level discriminator for the single-lepton and dilepton channels. For events without the 5th jet, the $p_T(j_5)$ is set to zero

Prompt-photon tagger output	Variable	Description	Single lepton	Dilepton
ATLAS	PPT	Prompt-photon tagger output	✓	
500 √s = 13 TeV, 36.1 fb ⁻¹ Had-fake e-fake	$H_{ m T}$	Scalar sum of the p_T of the leptons and jets	✓	
Single-lepton Fake lepton Wy Other prompt /// Uncertainty	$m(\gamma,\ell)$	Invariant mass of the system of the photon and the lepton	✓	
400 Pre-fit	$E_{ m T}^{ m miss}$	Missing transverse energy	✓	✓
	m_W^{T}	Reconstructed transverse mass of the leptonically decaying W -boson	✓	
300	-	$= \sqrt{2 \times p_{\mathrm{T}}(\ell) \times E_{\mathrm{T}}^{\mathrm{miss}} \times (1 - \cos(\Delta \phi(\ell, E_{\mathrm{T}}^{\mathrm{miss}})))}$		
	$N_{\rm jets}$	Jet multiplicity	✓	
200	$p_{\mathrm{T}}(j_1)$	$p_{\rm T}$ of the leading jet (ordered in $p_{\rm T}$)	✓	✓
	$p_{\mathrm{T}}(j_2)$	$p_{\rm T}$ of the sub-leading jet	✓	✓
100	$p_{\mathrm{T}}(j_3)$	$p_{\rm T}$ of the third jet	✓	
	$p_{\mathrm{T}}(j_4)$	$p_{\rm T}$ of the fourth jet	✓	
	$p_{\mathrm{T}}(j_5)$	$p_{\rm T}$ of the fifth jet	✓	
1.125	$N_{b ext{-jets}}$	b-jet multiplicity	✓	✓
1	$b_1(j)$	highest b-tagging score of all jets	✓	✓
0.875	$b_2(j)$	second highest b-tagging score of all jets	✓	✓
0.75 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1	$b_3(j)$	third highest b-tagging score of all jets	✓	
Event-level discriminator	$m(\ell,\ell)$	Invariant mass of the system of the two leptons		✓

ttγ differential measurements (single-lepton)

Dominated in general by the modelling of the ttbar sample I most of the unfolded bins

ttW/ttZ signal regions

ttW signal regions

2L

Requirement	2ℓ-SS(p,m)-1b	2e-SS(p,m)-2b	<i>e</i> μ-SS(p,m)-2 <i>b</i>	2μ -SS(p,m)-2b
$n_{b ext{-tags}}$	=1	≥2	≥2	≥2
$E_{\mathrm{T}}^{\mathrm{miss}}$	>40 GeV	>40 GeV	>40 GeV	>20 GeV
$H_{\mathrm{T}}^{'}$		>240	GeV	
$p_{\rm T}$ (leading lepton)		> 27	GeV	
$p_{\rm T}$ (subleading lepton)		> 27	GeV	
$n_{\rm jets}$	≥4	≥4	≥4	≥2
Z veto		$ m_{\ell\ell} - m_Z > 10 \text{ GeV in}$	n the $2e$ and 2μ region	ns

3L

TABLE V. Summary of event selection requirements in the trilepton signal regions targeting the $t\bar{t}W$ process.

Variable	3ℓp-noZ-2b2j	3ℓm-noZ-2b2j	3ℓp-noZ-1b2j	3ℓm-noZ-1b2j
All leptons		$p_{\mathrm{T}} >$	27 GeV	
Z veto (OSSF pair)		$ m_{\ell\ell}-m_{\ell} $	z > 10 GeV	
$n_{\rm jets}$		2	or 3	
$H_{ m T}$			>24	0 GeV
Sum of lepton charges	+1	-1	+1	-1
$n_{b ext{-tags}}$	≥2	≥2	1	1

ttZ signal regions

Variable	2 <i>ℓ</i> -Z-6j1b	2 <i>ℓ</i> -Z-5j2b	2 <i>ℓ</i> -Z-6j2b	
Leptons	=2, same	flavor and op	posite sign	
$m_{\ell\ell}$	$ m_{\ell\ell} - m_Z < 10 \text{ GeV}$			
$p_{\rm T}$ (leading lepton)		>30 GeV		
$p_{\rm T}$ (subleading lepton)		>15 GeV		
$n_{b ext{-tags}}$	1	≥2	≥2	
$n_{ m jets}$	≥6	5	≥6	

4L .

Region	Z_2 leptons	p_{T4}	p_{T34}	$ m_{Z_2}-m_Z $	$E_{ m T}^{ m miss}$	$n_{b ext{-tags}}$
4 <i>ℓ</i> -DF-1b	$e^{\pm}\mu^{\mp}$		>35 GeV			1
4 <i>ℓ</i> -DF-2b	$e^{\pm}\mu^{\mp}$	>10 GeV				≥2
4 <i>ℓ</i> -SF-1b	$e^{\pm}e^{\mp}, \mu^{\pm}\mu^{\mp}$		>25 GeV	\begin{cases} >10 \text{ GeV} \ <10 \text{ GeV} \end{cases}	>40 GeV >80 GeV	1
4ℓ-SF-2b	$e^{\pm}e^{\mp},\mu^{\pm}\mu^{\mp}$	>10 GeV	•••	{ >10 GeV < 10 GeV	 >40 GeV	≥2

31

Variable	3 <i>ℓ</i> -Z-1b4j	3 <i>ℓ</i> -Z-2b3j	3 <i>ℓ-</i> Z-2b4j	3ℓ-noZ-2b4j
Leading lepton	$p_{\mathrm{T}} > 27 \; \mathrm{GeV}$			
Other leptons	$p_{\rm T} > 20~{ m GeV}$			
Sum of lepton charges	±1			
Z requirement (OSSF pair)	$ m_{\ell\ell} - m_Z < 10 \text{ GeV}$			$ m_{\ell\ell} - m_Z > 10 \text{ GeV}$
$n_{ m jets}$	≥4	3	<u>≥</u> 4	≥4
$n_{b ext{-tags}}$	1	≥2	≥2	≥2

tty differential measurement (dilepton)

 Dominanted by statistical uncertainties except for bins at high values, where the main background modelling dominates

