EFT and FCNC interpretations with top quarks at CMS

Vrije Universiteit Brussel (IIHE-VUB)

on behalf of the CMS Collaboration

The European Physical Society Conference on High Energy Physics

Ghent, July 10-17, 2019

Effective Field Theory

- We saw no evidence of new physics yet
- Can new physics live at energies **beyond the LHC reach** ?
- Think wide!
- Interpret the effects of new physics at higher energies with an extended SM effective field theory (SMEFT) applicable within the LHC reach

Flavour-Changing Neutral Currents

- Forbidden at tree level and heavily suppressed at higher orders in SM by GIM mechanism
- Many new physics models allow
 FCNC processes
- Searches in top decays and single top+X production
- Interpretations via anomalous couplings and SMEFT framework

EFT in dilepton events with top quarks

36 fb⁻¹, 13 TeV

arXiv:1903.11144 (Submitted to EPJC)

- EFT interpretation for tW and ttbar using CP-even dimension-six operators
- Probe Wtb, chromomagnetic dipole moment, triple gluon field, and FCNC operators
- DS/DR for ttbar and tW interference at NLO
- Study rate and shape (for FCNC) information

		LISIVE		
Effective coupling	Channel e ⁺	Best fit	Observed [TeV [68% CI]	^{7–2}] [95% CI]
C_G/Λ^2	ee eμ μμ Combined	$-0.14 \\ -0.18 \\ -0.14 \\ -0.18$	$\begin{bmatrix} -0.82, 0.51 \\ [-0.73, 0.42] \\ [-0.75, 0.44] \\ [-0.73, 0.42] \end{bmatrix}$	$ \begin{bmatrix} -1.14, 0.83 \\ [-1.01, 0.70] \\ [-1.06, 0.75] \\ [-1.01, 0.70] \end{bmatrix} $
$\mathrm{C}^{(3)}_{\phi\mathrm{q}}/\Lambda^2$	ee eμ μμ Combined	$1.12 \\ -0.70 \\ 1.13 \\ -1.52$	$\begin{bmatrix} -1.18, 2.89 \end{bmatrix}$ $\begin{bmatrix} -2.16, 0.59 \end{bmatrix}$ $\begin{bmatrix} -0.87, 2.86 \end{bmatrix}$ $\begin{bmatrix} -2.71, -0.33 \end{bmatrix}$	$\begin{bmatrix} -4.03, 4.37 \\ [-3.74, 1.61] \\ [-3.58, 4.46] \\ [-3.82, 0.63] \end{bmatrix}$
C_{tW}/Λ^2	ee eμ μμ Combined	$6.18 \\ 1.64 \\ -1.40 \\ 2.38$	$\begin{bmatrix} -3.02, 7.81 \end{bmatrix}$ $\begin{bmatrix} -0.80, 5.59 \end{bmatrix}$ $\begin{bmatrix} -3.00, 7.79 \end{bmatrix}$ $\begin{bmatrix} 0.22, 4.57 \end{bmatrix}$	$\left[-4.16, 8.95 ight]$ $\left[-1.89, 6.68 ight]$ $\left[-4.23, 9.01 ight]$ $\left[-0.96, 5.74 ight]$
C_{tG}/Λ^2	ee eμ μμ Combined	$-0.19 \\ -0.03 \\ -0.15 \\ -0.13$	$\begin{bmatrix} -0.40, 0.02 \end{bmatrix}$ $\begin{bmatrix} -0.19, 0.11 \end{bmatrix}$ $\begin{bmatrix} -0.34, 0.02 \end{bmatrix}$ $\begin{bmatrix} -0.27, 0.02 \end{bmatrix}$	$\begin{bmatrix} -0.65, 0.22 \end{bmatrix}$ $\begin{bmatrix} -0.34, 0.27 \end{bmatrix}$ $\begin{bmatrix} -0.53, 0.19 \end{bmatrix}$ $\begin{bmatrix} -0.41, 0.17 \end{bmatrix}$
C_{uG}/Λ^2	ee eμ μμ Combined	$-0.017 \\ -0.017 \\ -0.017 \\ -0.017$	$\begin{bmatrix} -0.22, 0.22 \end{bmatrix}$ $\begin{bmatrix} -0.17, 0.17 \end{bmatrix}$ $\begin{bmatrix} -0.17, 0.17 \end{bmatrix}$ $\begin{bmatrix} -0.13, 0.13 \end{bmatrix}$	$\begin{bmatrix} -0.37, 0.37 \end{bmatrix}$ $\begin{bmatrix} -0.29, 0.29 \end{bmatrix}$ $\begin{bmatrix} -0.29, 0.29 \end{bmatrix}$ $\begin{bmatrix} -0.22, 0.22 \end{bmatrix}$
C_{cG}/Λ^2	ee eμ μμ Combined	-0.032 -0.032 -0.032 -0.032	[-0.47, 0.47] [-0.34, 0.34] [-0.36, 0.36] [-0.26, 0.26]	[-0.78, 0.78] [-0.60, 0.60] [-0.63, 0.63] [-0.46, 0.46]

Kirill Skovpen - EPS-HEP 2019

36 fb⁻¹, 13 TeV

arXiv:1907.03729 (Submitted to PRD)

- Constrain anomalous **four-particle** effective couplings with top quarks
- Probe the top quark **chromomagnetic (CM)** and chromoelectric (CE) dipole moments **(DM)**
- The **EFT** study via the measurements of ttbar spin correlations and differential production cross sections
- Measure full spin density matrix and use all possible relevant observables
- Sensitivity to CMDM and CEDM significantly improved with respect to existing direct constraints

 $-0.24 < C_{tG}/\Lambda^2 < 0.07 \text{ TeV}^{-2}$ $-0.33 < C_{tG}^{[I]}/\Lambda^2 < 0.20 \text{ TeV}^{-2}$

more results in the talk by Agostino De Iorio

NEW

Search for 4 top quark production

Events/bin

10³

10²

10

10⁻¹

10-2

Data-Pred. Pred. 2.0⁻ Pred.

36 fb⁻¹, 13 TeV

arXiv:1906.02805 (Submitted to JHEP)

CMS

μμ

 $N_i = 6-7, N_{tags}^m \ge 3$

35.8 fb⁻¹ (13 TeV)

 $N_j \ge 8, N_{tags}^m \ge 3$

dileptons

 $N_i \ge 8, N_{tags}^m = 2$

- Single lepton and dilepton OS
- Combined with previously published dilepton SS and trilepton analysis
- Dominant uncertainties from limited statistics, b tagging, jet reconstruction and modelling
- Combined sensitivity to 4 top production at 1.4 (1.1) σ
- Constrain four-fermion operators via event rate for C_{tt}¹, C_{QQ}¹, C_{Qt}¹, C_{Qt}⁸

36 fb⁻¹, 13 TeV

JHEP 08 (2018) 011

- Study new physics effects in ttW, ttZ and ttH production
- Set constraints on top quark electroweak, triple gluon field and Higgs couplings ttZ and ttH: C_{3G}, C_{2G}, C_{uB} ttZ: C_{Hu} ttH: C_H all processes: C_{uG}, C_{uW}

more results in the talk by Enrique Palencia

Wilson coefficient	Best fit [TeV ⁻²]	68% CL [TeV ⁻²]	95% CL [TeV ⁻²]
$\bar{c}_{\rm uW}/\Lambda^2$	1.7	[-2.4, -0.5] and $[0.4, 2.4]$	[-2.9,2.9] ive
$ \bar{c}_{\rm H}/\Lambda^2 - 16.8~{ m TeV^{-2}} $	15.6	[0,23.0]	[0,28.5] (JUST
$ \tilde{c}_{3\rm G}/\Lambda^2 $	0.5	[0, 0.7]	[0,0.9] e ^{+c}
$\bar{c}_{3\rm G}/\Lambda^2$	-0.4	[-0.6, 0.1] and $[0.4, 0.7]$	[-0.7, 1.0]
$\bar{c}_{\rm uG}/\Lambda^2$	0.2	[0, 0.3]	[-1.0, -0.9] and $[-0.3, 0.4]$
$ \bar{c}_{\mathrm{uB}}/\Lambda^2 $	1.6	[0, 2.2]	[0,2.7]
$\bar{c}_{\rm Hu}/\Lambda^2$	-9.3	[-10.3, -8.0] and $[0, 2.1]$	[-11.1, -6.5] and $[-1.6, 3.0]$
$\bar{c}_{2\rm G}/\Lambda^2$	0.4	[-0.9, -0.3] and $[-0.1, 0.6]$	[-1.1, 0.8]

2019/07/11

Kirill Skovpen - EPS-HEP 2019

78 fb⁻¹, 13 TeV

CMS PAS TOP-18-009

more results in the talk by Enrique Palencia

- Set constraints on
 - EFT electroweak operators $(C_{tZ}, C_{tZ}^{[I]}, C_{\phi t}, C_{\phi Q})$
 - Vector and axial-vector current couplings $(C_{1A,V})$ and electroweak dipole moments $(C_{2A,V})$

Future EFT projections

arXiv:1902.04070, CMS PAS FTR-18-031, CMS PAS FTR-18-036

Very good prospects for EFT interpretations in the top quark sector!

Present and future of FCNC searches

EPJC 79 (2019) 474

2019/07/11

Future FCNC EFT projections

arXiv:1812.07638

Factor of \approx 2 improvement in the constraints on several two-fermion FCNC operators

Kirill Skovpen - EPS-HEP 2019

Conclusion

- Interpretation of the LHC experimental results in the EFT framework represents an important LHC legacy result for many years to come
- Presented several first EFT results for some very rare processes with top quarks
- Search for FCNC continues with setting strong limits
- Recent highlights from CMS:
 - Comprehensive EFT interpretations from new ttZ differential cross section measurement and studies of the ttV production
 - Sirst NLO EFT in the study of the tW process
 - Hunt for 4 top production in progress with probing four-fermion EFT operators
 - Good prospects for future EFT and FCNC studies at HL-LHC
- Interpretations go easy with Belgian beer!

Future FCNC EFT projections

arXiv:1812.07638

- Most stringent constraints on both two- and four-fermion operators expected at the HL-LHC
- Significant improvement for two-fermion operators at HL-LHC with reaching LEP-II sensitivity for four-fermion operators (mainly from other indirect constraints)

36 fb⁻¹, 13 TeV

IHEP 08 (2018) 011

Data

CMS

60

- Sensitive to **electroweak couplings** of the top quark
- Important background to ttH
- Prompt: WW, WZ Z+jets, ttbar (only in dilepton OS)
- Non-prompt: Z+jets, ttbar
- ttW measured in dilepton SS
- ttZ extracted from trilepton and 4-lepton

ttZ Nonprompt

WZ

t(t)X

Rare

35.9 fb⁻¹ (13 TeV)

Charge mis-ID

78 fb⁻¹, 13 TeV

CMS PAS TOP-18-009

- Cross sections measured wrt p_T(Z) and cos(θ*) angle between Z and negatively charged lepton from Z decay in Z rest frame
- Trilepton and 4-lepton
- Dominant
 systematics reduced
 by 2x due to
 improved lepton ID
 (≈15% higher prompt lepton efficiency)

Kirill Skovpen - EPS-HEP 2019

6

36 fb⁻¹, 13 TeV

$$\mathcal{M}(q\bar{q}/gg \to t\bar{t} \to (\ell^+\nu b)(\ell^-\bar{\nu}\bar{b}))|^2 \sim Tr[\rho R\bar{\rho}]$$

$$R \propto \tilde{A} \mathbb{1} \otimes \mathbb{1} + \tilde{B}_i^+ \sigma^i \otimes \mathbb{1} + \tilde{B}_i^- \mathbb{1} \otimes \sigma^i + \tilde{C}_{ij} \sigma^i \otimes \sigma^j$$

$$\frac{1}{\sigma}\frac{d\sigma}{d\Omega_1 d\Omega_2} = \frac{1}{(4\pi)^2} \left(1 + \mathbf{B_1} \cdot \hat{\ell}_1 + \mathbf{B_2} \cdot \hat{\ell}_2 - \hat{\ell}_1 \cdot C \cdot \hat{\ell}_2\right)$$

$$\begin{split} \tilde{B}_{i}^{\pm} &= b_{k}^{\pm} \hat{k}_{i} + b_{r}^{\pm} \hat{r}_{i} + b_{n}^{\pm} \hat{n}_{i}, \\ \tilde{C}_{ij} &= c_{kk} \hat{k}_{i} \hat{k}_{j} + c_{rr} \hat{r}_{i} \hat{r}_{j} + c_{nn} \hat{n}_{i} \hat{n}_{j} \\ &+ c_{rk} (\hat{r}_{i} \hat{k}_{j} + \hat{k}_{i} \hat{r}_{j}) + c_{nr} (\hat{n}_{i} \hat{r}_{j} + \hat{r}_{i} \hat{n}_{j}) + c_{kn} (\hat{k}_{i} \hat{n}_{j} + \hat{n}_{i} \hat{k}_{j}) \\ &+ c_{n} (\hat{r}_{i} \hat{k}_{j} - \hat{k}_{i} \hat{r}_{j}) + c_{k} (\hat{n}_{i} \hat{r}_{j} - \hat{r}_{i} \hat{n}_{j}) + c_{r} (\hat{k}_{i} \hat{n}_{j} - \hat{n}_{i} \hat{k}_{j}). \end{split}$$

36 fb⁻¹, 13 TeV

36 fb⁻¹, 13 TeV

Coupling	Operator type	Symmetry properties
μ̂t	2 quarks plus gluon(s)	P-even, CP-even
$\hat{d_t}$	2 quarks plus gluon(s)	P-odd, CP-odd
ĉ	2 quarks plus gluon(s)	P-odd, CP-odd
\hat{c}_{-+}	2 quarks plus gluon(s)	P-even, CP-odd
\hat{c}_{VV}	4 quarks (weak isospin 0)	P-even, CP-even
\hat{c}_{VA}	4 quarks (weak isospin 0)	P-odd, CP-even
\hat{c}_{AV}	4 quarks (weak isospin 0)	P-odd, CP-even
\hat{c}_{AA}	4 quarks (weak isospin 0)	P-even, CP-even
\hat{c}_1	4 quarks (weak isospin 1)	CP-even
\hat{c}_2	4 quarks (weak isospin 1)	CP-even
ĉ ₃	4 quarks (weak isospin 1)	CP-even

36 fb⁻¹, 13 TeV

Search for top-Higgs FCNC

JHEP 06 (2018) 102

- Probe tH (H→bb) FCNC in lepton+jets events
- Use of BDT and event categorisation to deal with the dominant ttbar+jets background

tH FCNC

Search for *top-Z* **FCNC**

<u>CMS PAS TOP-17-017</u>

2019/07/11

36 fb⁻¹, 13 TeV

JHEP 08 (2018) 011

Pre-fit data/MC comparisons in SS dilepton

36 fb⁻¹, 13 TeV

JHEP 08 (2018) 011

Background validation

36 fb⁻¹, 13 TeV

JHEP 08 (2018) 011

Post-fit data/MC comparisons

3L

2L SS

4L

36 fb⁻¹, 13 TeV

JHEP 08 (2018) 011

Cross section extraction

78 fb⁻¹, 13 TeV

CMS PAS TOP-18-009

Systematics

Source	Uncertainty	Correlated	Impact on the ttZ
	range (%)	in 2016 and 2017	cross section (%)
Integrated luminosity	2.5	×	2
PU modeling	1–2	\checkmark	1
Trigger	2	×	2
Lepton ID efficiency	4.5-6	\checkmark	4
Jet energy scale	1–9	\checkmark	2
Jet energy resolution	0–1	\checkmark	1
B tagging light flavor	0–4	×	1
B tagging heavy flavor	1–4	×	2
Choice in $\mu_{\rm R}$ and $\mu_{\rm F}$	1 - 4	\checkmark	1
PDF choice	1–2	\checkmark	1
Color reconnection	1.5	\checkmark	< 1
Parton shower	1–8	\checkmark	1
WZ cross section	10-20	\checkmark	3
WZ + heavy flavor	8	\checkmark	1
ZZ cross section	10	\checkmark	1
t(t̄)X bg.	10-15	\checkmark	3
$X\gamma$ background	20	\checkmark	1
Nonprompt background	30	\checkmark	< 1
Rare SM background	50	\checkmark	2
Stat. unc. in nonprompt bg.	5-50	×	< 1
Stat. unc. in rare SM bg.	5-100	\times	< 1
Total uncertainty			7

78 fb⁻¹, 13 TeV

<u>CMS PAS TOP-18-009</u>

$$c_{tZ} = \operatorname{Re} \left(-\sin \theta_{W} C_{uB}^{(33)} + \cos \theta_{W} C_{uW}^{(33)} \right)$$

$$c_{tZ}^{[I]} = \operatorname{Im} \left(-\sin \theta_{W} C_{uB}^{(33)} + \cos \theta_{W} C_{uW}^{(33)} \right)$$

$$c_{\phi t} = C_{\phi t} = C_{\phi u}^{(33)}$$

$$c_{\phi Q}^{-} = C_{\phi Q} = C_{\phi q}^{1(33)} - C_{\phi q}^{3(33)},$$

Coefficient	Expected		Observed		Previous CMS constraints		Indirect constraints
	68% CL	95% CL	68% CL	95% CL	Exp, 95% CL	Obs, 95% CL	68% CL
c_{tZ}/Λ^2	[-0.7, 0.7]	[-1.1, 1.1]	[-0.8, 0.5]	[-1.1, 1.1]	[-2.0, 2.0]	[-2.6, 2.6]	[-4.7, 0.2]
$c_{tZ}^{[I]}/\Lambda^2$	[-0.7, 0.7]	[-1.1, 1.1]	[-0.8, 1.0]	[-1.2, 1.2]	_	_	-
$c_{\phi t}/\Lambda^2$	[-1.6, 1.4]	[-3.4, 2.8]	[2.2, 4.7]	[0.7, 5.9]	[-20.2, 4.0]	[-22.2, -13.0] [-3.2, 6.0]	[-0.1, 3.7]
$c_{\phi Q}^{-}/\Lambda^{2}$	[-1.1, 1.1]	[-2.1, 2.2]	[-3.0, -1.0]	[-4.0, 0.0]	_	-	[-4.7, 0.7]

78 fb⁻¹, 13 TeV

CMS PAS TOP-18-009

Data/MC comparison

78 fb⁻¹, 13 TeV

CMS PAS TOP-18-009

Data/MC comparison

78 fb⁻¹, 13 TeV

CMS PAS TOP-18-009

Normalized differential cross sections

78 fb⁻¹, 13 TeV

CMS PAS TOP-18-009

EFT constraints

Search for 4 tops

36 fb⁻¹, 13 TeV

CMS PAS TOP-17-019

Data/MC comparison in single lepton (post-fit)

Search for 4 tops

36 fb⁻¹, 13 TeV

CMS PAS TOP-17-019

Data/MC comparison in single lepton (post-fit)

