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Introduction

Machine Learning
e ML has been used extensively in several domains
e Very recently also in accelerator physics

o Also for the LHC at CERN
e In this talk: 4 collaborations working on different topics
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Introduction

Machine Learning at the LHC

e Concerning machine operation:
e Collimator alignment
e Recognition of faulty monitors
e Correction of beam optics variables

o Concerning analysis of measurements and simulations:
e Anomaly detection in tracking simulations
e Extrapolation of tracking simulations
e Modelling beam lifetime by operational settings
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Context

LHC Protection System
e The LHC uses a system of 100 collimators for protection

e These must be aligned around the two beams with a
precision better than 50pm
e Alignments are performed yearly before start of operation

Applications with Machine Learning

o Alignment is tedious, time-consuming, and repetitive
e |deal situation for machine learning
= supervised learning
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Setup

Beam Loss Monitors (BLMs)

Collimator i
e record losses as they touch the be@é

e experts monitor these losses to F—

deduce collimator alignment i

Spikes

e data sample taken when collimator stops moving

e spike when threshold in BLM is passed

e goal is to distinguish real spikes (beam is hit) from noise

| -

| \

y
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Spike Classification

Approach

e Six ML models for spike classification were compared
Logistic Regression, Neural Network, SVM, Decision Tree, Random Forest,
Gradient Boost

e data (8706 samples) split into: 85% training, 15% testing

e enforce: no false positives

o false negatives are OK (because alignment will continue)

e no retraining needed unless hardware changes

e Analysis of beam crosstalk allows parallel alignments
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Results

e ML can replace human operators for alignments
e More than three times faster!

e ML-based alignment will be default from now on
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Context UNIVERSITAT

FRANKFURT AM MAIN

Analysis of Beam Optics

e Beam Position Monitors (BPMs) measure excited beam
e Faulty BPMs give unphysical values for optics functions

| A

Applications with Machine Learning
e ldentify and remove faulty BPMs from data

= anomaly detection by unsupervised learning
o Correct -beating

= supervised learning

\
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Anomaly Detection UNIVERSITAT
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Approach

o Past measurements show that ~ 10% of BPMs are faulty

e Non-physical spikes in optics are artefact of bad BPMs
= Use ML to identify faulty BPMs from harmonic analysis
= To avoid spikes in optics functions

e enforce: no false negatives (don’t keep a bad BPM)

o false positives are OK (we have >1000 BPMs...)

e Four ML algorithms are compared:

K-means, DBSCAN, Local Outlier Factor, Isolation Forest
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Anomaly Detection UNIVERSITAT

FRANKFURT AM MAIN

e Very good recognition of faulty BPMs
e Now integrated by default into optics measurements at

LHC
o Successfully used during commissioning and machine

developments
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Correction of Beta-Beating UNIVERSITAT

FRANKFURT AM MAIN

e (-function calculated from harmonic analysis of BPMs
e (-beating is ratio of measured over designed S-function
e Corrections in the LHC are based on response matrix

¢ before correction § after correction

0.08
0.06
0.04{?

3
(3 [
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Longitudinal location [m]

Machine Learning (work in progress)
ML to replace response matrix = supervised learning
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Correction of Beta-Beating UNIVERSITAT
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Approach

Phase advance

Ideal optics measured at
1046 BPMs from
ideal optics
+
Correlation! ‘

190 errors in quad circuits =
(not in a single quadrupole) L E— ifiference

1 MAD-X ML f

Phase advance
measured at
1046 BPMs from
perturbed optics

Perturbed optics
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Correction of Beta-Beating UNIVERSITAT
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Approach

e Three ML algorithms are compared:

Convolutional Neural Network, Linear Regression, Ridge
e CNN (Keras with TensorFlow backend):
e Used for image processing
e Spatially dependent features: phase advance between
neighbouring BPMs
e Different deep layers look for different features

e Very simple model is applied: no parameter tuning, no
optimisation
= Lots of improvements are possible
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Correction of Beta-Beating UNIVERSITAT
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Correction of Beta-Beating UNIVERSITAT

FRANKFURT AM MAIN

Pbeating®  peak =~ rms o All methods demonstrate
Uncorrected 32+10 11+3

Response Matrix 115 3+2 similar performance
CNN 11+2 3.240.5 . c

Ridge regression  10+2 2.9+0.8 o Linear Regression ML
Linear regression ~ 9+2 2.6+1.7 aChleVGS best correction
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Context

Dynamic Aperture

e A tool to estimate beam quality

e It is the volume of the smallest connected region in phase
space that remains stable for a certain amount of time

e Its evolution over time can be estimated with scaling laws
e DA can describe beam losses and luminosity evolution

| \

Applications with Machine Learning
e Anomaly detection = unsupervised learning
e DA extrapolation = supervised learning
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e 60 random realisations (‘seeds’) in LHC simulations

Anomaly Detection

e Sometimes one seed gives very bad DA for one angle
(because close to resonance, internal cancellations, ...)

y

Machine Learning

e Use ML to flag these outliers
— let human decide whether or not to remove
¢ Investigate anomaly dependence on angles or seeds

EPS-HEP 2019 ML @ LHC
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Anomaly Detection

Approach

Points are sometimes clustered in several groups
= DBSCAN to recognise clusters

(scaled over population, min 3 points in a cluster)
points not in cluster are possible outliers
= LOF to quantify outlier strength
= Cut off at minimum threshold, and outliers can only
exist as minima or maxima (not in between)
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Anomaly Detection

80° 80°
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Anomaly Detection
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Anomaly Detection
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Anomaly Detection

Results
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Anomaly Detection

e Outlier detection per angle works as expected
But human verification is indeed needed!
— to decide whether or not to remove a particular seed
(depending on behaviour of nearby angles)

e ~ 10x more outliers at large angles and seeds 1 and 52
= further investigation needed
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Curve Fitting and Extrapolation

e DA simulations are very CPU-intensive

= only 10° — 10° turns (~ 1 minute) are achievable
e Realistic timescales are much larger (~ 10 hours)

= simulations need to be extrapolated
e Scaling laws exist to describe evolution over time

v

Machine Learning (work in progress)

e Use ML to improve fitting to scaling laws
e Recurrent Neural Network to make prediction estimates
(Well-suited to predicted sequential / time-series data)
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Curve Fitting and Extrapolation

e Existing scaling laws work well to describe the data
e But not that much to predict (sensitivity of fit parameters)

15.50 A —— Fitted up to 0.5-10° turns
—— Fitted up to 1.0-10° turns
15.25 A
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Curve Fitting and Extrapolation

Trying with a Neural Network

e Brute-force approach: not including any info from scaling

e Time series analysis (LSTM with Keras)
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Curve Fitting and Extrapolation

Trying with a Neural Network

¢ Results aren’t very impressive; deeper investigation is
needed

o Alternative: use a Neural Network to find optimal weights
to fit to existing scaling laws
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Beam Lifetime

o Is the time 7 such that intensity I(7) = 21,

o Real-life counterpart of DA, describing beam quality
o Strongly influenced by operational settings

o Extraction from simulation is difficult (coherent instabilities)

Applications with Machine Learning
o Avoid time- and CPU-consuming tracking simulations
e Model that directly relates lifetime to machine settings
e Ample data available, focus on 2017 and 2018
= supervised learning

| \
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Approach

e Input:

tunes (H/V, B1/B2) emittances (H/V, B1/B2)
sextupole strengths (B1/B2) e octupole strength (B1/B2)

elapsed time timestamps
e number of bunches (B1/B2) o ...

e Output:
e beam lifetimes (B1/B2, from slope of BCTs)

e Data from Run 2
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Beam Lifetime Model mew EPEL
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Multi-Parameter Optimisation miwe EPEL

Optimal Settings

e Close to resonances: highest lifetime

e However this also gives emittance blow-up

e Latter is unwanted as it decreases luminosity

= Multi-objective optimisation problem

EPS-HEP 2019



Multi-Parameter Optimisation mrn EPEL

Optimal Settings
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Optimal Settings

0.305 30
Beam 1

0.300 25
recommended

0.295 20 .

. 7  settings:

0.290 15% Gz = 0279

0.285 10 Qy = 0286

0.280 5
Beam 2 similar

0.265 0.270 0.275 0.280 0.285 0.290
qx




Outline

@ Conclusions and Outlook



Conclusions
e Collimator Alignment:
e ML is now the standard tool for collimator alignments
o Optics Measurements and Correction:
e ML is now the standard tool to find faulty BPMs
e First steps are made to use ML as an alternative for the
response matrix
o Dynamic Aperture:
e Anomaly detection is very efficient
o Beam Lifetime:
o First steps are made towards a model that predicts lifetime
in function of the operational parameters
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Outlook
e Collimator Alignment:
e Advanced crosstalk analysis — more alignments in parallel
o Optics Correction:
o Larger dataset — more general model
e Add more sources of errors and non-linearities
e Reinforcement Learning
o Dynamic Aperture:
e Anomaly detection by centralised supervised learning
e Improve prediction algorithms using high-precision data
e Use supervised learning on fitting weights
o Beam Lifetime:
e Larger dataset and more operational parameters
— more general model
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Setup
Spike Parameterisation

5 parameters:
jaw position (1), spike height (1), and decay fit (3)

166

229.12, 4.03, 21.98

3001 314.94

|
1
—

520 spike

3 exponential
150 height

decay

3.01

jaw position in o

=5 -4 -3 -2 -1 1 2 3 4

Time (s)
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Correlations
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Internal Correlations

Lifetimes depend on
tunes from both beams!

= Need to de-correlate
before continuing
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Robustness of Model

e Use dedicated MD run:
o to decorrelate tunes between two beams
e to extend tune range further than only current operational
settings
e This allows us to test robustness of model:
e does the tunes correlation matter?
e behaviour of other beam parameters when lifetime is Iarge?)
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Machine Development

\\/\) (> o random walk over tunes
=N :;> /N o different random walk for

- ﬁ\_ﬁj\jj /I beam 2 at the same moment
o L f N » do this for different

’’’’’’ e e operational settings
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