

Gamma factory at CERN

Progress report

European Physical Society conference on High Energy physics July 12th 2019, Ghent, Belgium

Y. Dutheil, CERN On behalf of the Gamma Factory collaboration

12/07/2019

Gamma Factory - EPS-HEP 2019

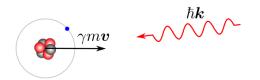
Gamma Factory collaboration, today

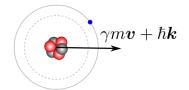
A. Abramov¹, S.E. Alden¹, R. Alemany Fernandez², P.S. Antsiferov³, A. Apyan⁴, H. Bartosik², E.G. Bessonov⁵, N. Biancacci², J. Bieroń⁶, A. Bogacz⁷, A. Bosco¹, R. Bruce², D. Budker^{8,9,10}, K. Cassou¹¹, F. Castelli¹², I. Chaikovska¹¹, C. Curatolo¹³, P. Czodrowski², A. Derevianko¹⁴, K. Dupraz¹¹, Y. Dutheil², K. Dzierżęga⁶, V. Fedosseev², N. Fuster Martinez², S.M. Gibson¹, B. Goddard², A. Gorzawski^{15,2}, S. Hirlander², J.M. Jowett², R. Kersevan², M. Kowalska², M.W. Krasny^{16,2}, F. Kroeger¹⁷, D. Kuchler², M. Lamont², T. Lefevre², D. Manglunki², B. Marsh², A. Martens¹¹, J. Molson², D. Nutarelli¹¹, L.J. Nevay¹, A. Petrenko², V. Petrillo¹², W. Płaczek⁶, S. Redaelli², S. Pustelny⁶, S. Rochester¹⁸, M. Sapinski¹⁹, M. Schaumann², M. Scrivens², L. Serafini¹², V.P. Shevelko⁵, T. Stoehlker¹⁷, A. Surzhykov²⁰, I. Tolstikhina⁵, F. Velotti², G. Weber¹⁷, Y.K. Wu²¹, C. Yin-Vallgren², M. Zanetti^{22,13}, F. Zimmermann², M.S. Zolotorev²³ and F. Zomer¹¹

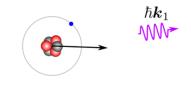
¹Royal Holloway University of London Egham, Surrey, TW20 0EX, United Kingdom ²CERN, Geneva, Switzerland ³Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow Region, Russia ⁴A.I. Alikhanyan National Science Laboratory, Yerevan, Armenia ⁵P.N. Lebedev Physical Institute, Russian Academy of Sciences, Leninskii prospect 53, 119991-Moscow, Russia ⁶Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland ⁷Center for Advanced Studies of Accelerators, Jefferson Lab, USA ⁸Helmholtz Institute, Johannes Gutenberg University, Mainz, Germany ⁹Department of Physics, University of California, Berkeley, USA ¹⁰Nuclear Science Division, E.O. Lawrence National Laboratory, Berkeley, USA ¹¹LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France ¹²Department of Physics, INFN–Milan and University of Milan, Milan, Italy ¹³INFN–Padua, Padua, Italy ¹⁴University of Nevada, Reno, Nevada 89557, USA ¹⁵University of Malta, Malta ¹⁶LPNHE, University Paris Sorbonne, CNRS–IN2P3, Paris, France ¹⁷HI Jena, IOQ FSU Jena and GSI Darmstadt, Germany ¹⁸Rochester Scientific, LLC, El Cerrito, CA 94530, USA ¹⁹GSI, Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany ²⁰Braunschweig University of Technology and Physikalisch-Technische Bundesanstalt, Germany ²¹FEL Laboratory, Duke University, Durham, USA ²²University of Padua, Padua, Italy23Center for Beam Physics, LBNL, Berkeley, USA

Content

- Physics principle
- Physics opportunities
- Progress
- Challenges
- Proof-of-Principle at the CERN SPS
- LHC scenario
- Conclusion




Physics principle


- Excitation of partially stripped ion at high energy
 - In the ion reference frame the photon gets a ~2γ boost
 - The change in momentum of the ion is very small

- A photon is spontaneously emitted, isotropically in the reference frame of the ion
- The boost back to the rest frame provides another ${\sim}2\gamma$ boost to forward photons

Physics principle: Gamma photon beam

- High energy
 - The system effectively acts as photon frequency converter with maximum photon energy increased by a factor ${\sim}4\gamma^2$
- High flux
 - As resonant systems, PSI (Partially Stripped Ions) have orders of magnitude larger photon-scattering cross-sections than those for bare ions or electrons, ensuring large gamma photon fluxes
- High efficiency
 - As the ion momentum is much larger than the photon's, excitation only induces a very small deviation of the ion trajectory
 - The energy transferred to the gamma photon is recovered from the RF cavity

Physics principle : Ion beam cooling

- Beam cooling
 - As the ion momentum is much larger than the photon's, excitation only induces a very small deviation of the ion trajectory
 - Example of simulated dynamics for fast longitudinal cooling

Physics principle : Ion beam cooling

- Beam cooling
 - As the ion momentum is much larger than the photon's, excitation only induces a very small deviation of the ion trajectory
 - Example of simulated dynamics for fast longitudinal cooling

Physics opportunities

- particle physics
 - studies of the basic symmetries of the universe, dark matter searches, precision QED studies, rare muon decays, neutrino-factory physics, precision-support measurements for the LHC - DIS physics, muon collider physics
- nuclear physics
 - confinement phenomena, link between the quark-gluon and nucleonic degrees of freedom, photo-fission research program
- accelerator physics
 - beam cooling techniques, low emittance hadronic beams, plasma wake field acceleration, high intensity polarised positron and muon sources, secondary beams of radioactive ions and neutrons, neutrino-factory
- atomic physics
 - electronic and muonic atoms
- applied physics
 - accelerator driven energy sources, cold and warm fusion research, isotope production: alpha-emitters for medical applications, ...

Physics opportunities : Collider schemes

- Primary beams
 - Partially stripped ions
 - Electron beams
 - Gamma rays
- Two photon collider schemes
 - Two high energy gamma beams
 - One high energy gamma beam and one laser beam
- Gamma-hadron collisions
- Electron-ion collisions

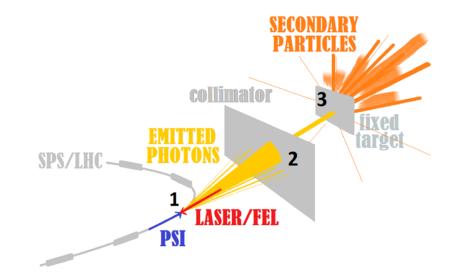
```
SPS/LHC PHOTONS

1

LASER/FEL

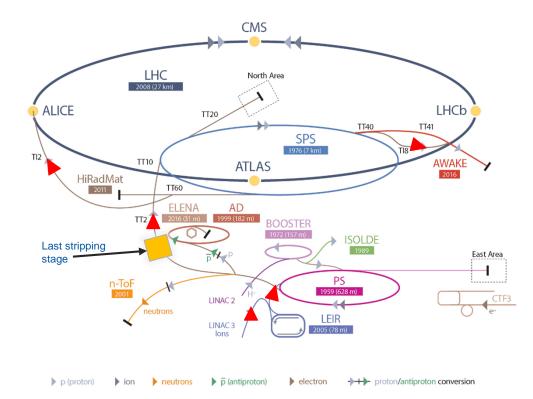
PSI
```

 $E_{CM} = 4 - 200 \text{ GeV}$


 $\gamma - \gamma$ collisions, $E_{CM} = 0.1 - 800 \text{ MeV}$ $\gamma - \gamma_L$ collisions, $E_{CM} = 1 - 100 \text{ keV}$ $\gamma - p(A), ep(A)$ collisions,

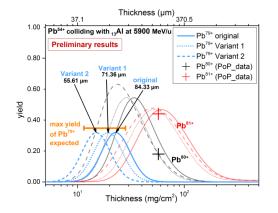
+ +

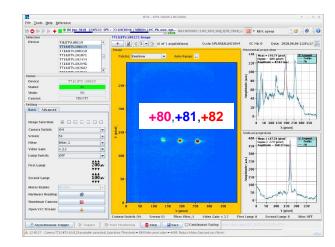
Physics opportunities : Secondary beams


- Polarised positrons
 - up to 10¹⁷/s
- Polarised muons and neutrinos
 - low emittance beams for muon collider, high purity neutrino beams
 - up to 10^{12} /s and up to 4 x 10^{19} /year
- Neutrons
 - GDR in heavy nuclei: $\gamma + A \rightarrow A 1 + n$
 - up to 10¹⁵ /s, mono-energetic
- Radioactive ions
 - photo-fission $\gamma + A \rightarrow A_1 + A_2 + n$
 - up to 10¹⁴ /s

Progress : PSI production

- CERN is already accelerating heavy ions to high energy
 - In particular lead, xenon, argon and soon oxygen
 - But gamma factory proposes to use other species such as calcium
- Nominal ion operation makes use of fully stripped ions
- PSI beam production requires new stripping schemes
 - Requires careful optimisation between stripping efficiency, available locations and accessible beam charge to mass ratio

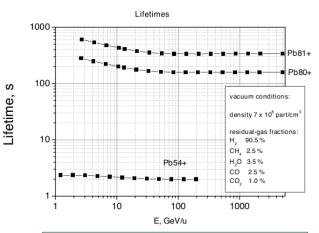


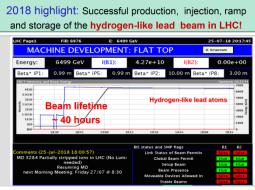

12/07/2019

Gamma Factory - EPS-HEP 2019 11

Progress : PSI production

- Detailed simulations to optimise the stripping efficiency
 - 150 μ m thick aluminum foil inclined at 45° installed between the PS and the SPS
 - Excellent agreement with measured efficiency, with the single foil, at ~20% for Pb⁸⁰⁺
 ~50% for Pb⁸¹⁺
- In 2018, Pb⁸⁰⁺ and Pb⁸¹⁺ were successfully accelerated in the SPS and Pb⁸¹⁺ to the maximum LHC energy





Progress : PSI lifetime measurement

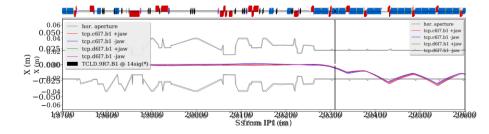
- Electron stripping by the residual gas limits the lifetime of PSI beams in the SPS
 - Lifetime is function of species, energy, residual pressure and composition
- Measurement of the lifetime in the SPS
 - 660 ± 30 s for Pb⁸¹⁺
 - 350 ± 50 s for Pb⁸⁰⁺
- Measurement of the Pb⁸¹⁺ lifetime in the LHC
 - 20.5 ± 2.5 h at injection energy
 - 54.5 ± 1.7 h at top energy
- Currently the PSI beam intensity in the LHC is limited by the efficiency of the collimation system
 - A new collimation device (TCLD), planned for installation during LS2, should allow to overcome this limit

Intensity/bunch (~7 x 10⁹ charges), 6 bunches circulating. ¹⁰

Challenges : primary photon source

- Several parameters need to be optimised
 - Laser beam transverse size at the interaction point
 - Laser beam pulse duration
 - Laser beam spectrum
- Limited technological choices
 - Fabry-Perot resonant cavity to achieve the MHz level repetition rate associated with the typical distance between consecutive bunches
 - Single pass pulsed laser limited to kHz level repetition rate
 - Free electron laser to produce photons beyond a few eV

Challenges : Software tools


- Parallel development and benchmark of laser ion interaction on several modeling codes
 - Currently 5 independent codes are being developed
- Complex dynamics associated with large fraction of the ion beam excited at every crossing
 - In some configuration each ion is excited multiple times per crossing
- Modelling is necessary to optimise the beam and laser parameters and to predict their evolution over hours

Challenges : beam dynamics

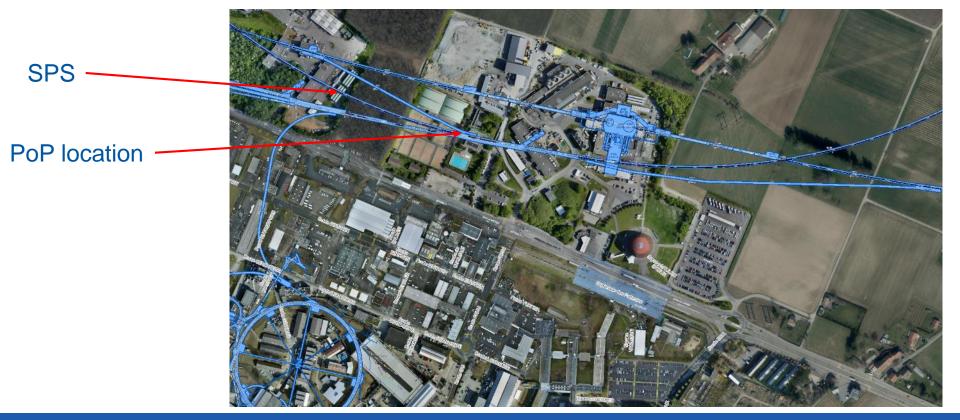
- Ion beam stability and control
 - Reliable and reproducible ion excitation requires a high level of control of the ion beam
 - Typical relative beam momentum stability needs to be in the order of 10⁻⁵
 - Optimise the fraction of excited ions per crossing
 - PSI beam lifetime in the LHC is limited by the efficiency of the collimation, although that effect should be mitigated by a new collimation device planned for installation

- Cooling and beam stability
 - Possibly fast cooling, down to a few seconds, may lead to very low emittance and instability

 Equilibrium between cooling and heating processes is needed for continuous photon production

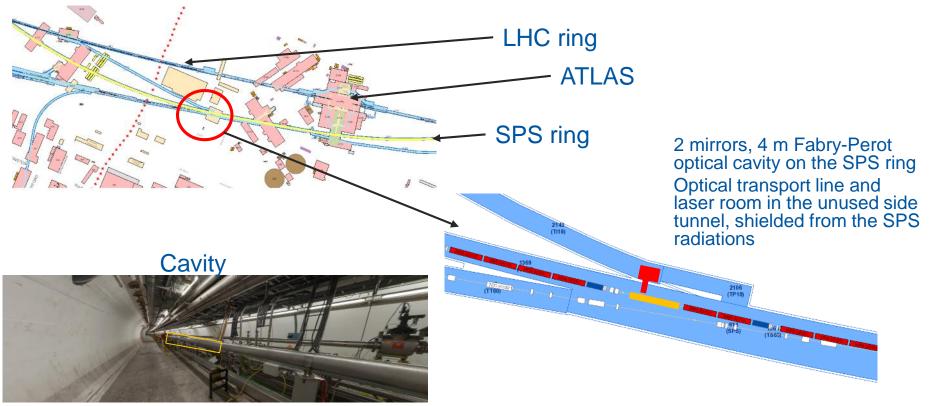
SPS Proof-of-Principle : objectives

- Main objectives
 - Development and operation of high-power laser in synchrotron ring
 - Verify simulation models for ion excitation and beam dynamics
- Demonstrate excitation
 - Achieve resonant excitation of the PSI beam and maximize produced photons flux
 - Optimise and maintain resonant condition for up to 100 s
- Demonstrate cooling
 - Through accurate control of the beam energy and position it is possible to observe longitudinal cooling in as little as a few seconds
 - Possibly measure transverse cooling by making use of the correlation between position and energy of the ion beam at the interaction point
- Accurately measure the ion transition energy by carefully calibrating the ion beam absolute energy

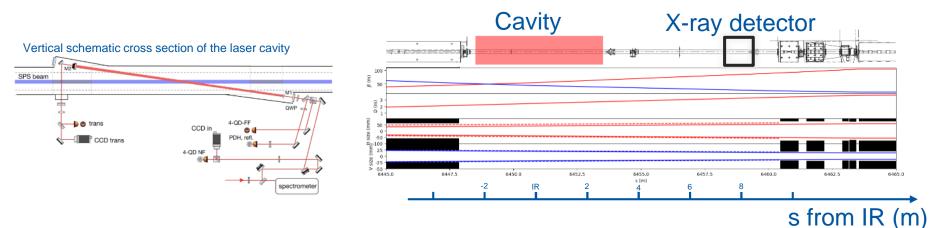


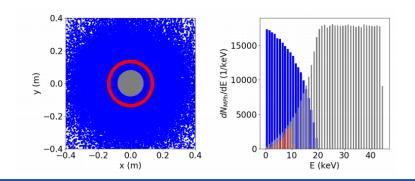
SPS Proof-of-Principle : parameters

- Species and transition choice
 - Lithium like lead, Pb⁷⁹⁺ with γ =96
 - $(2s \rightarrow 2p)_{1/2}$ transition with $\Delta E=230.8 \text{ eV}$
- Primary photon source
 - Fabry-Perot laser cavity 1.2 eV and 40 MHz
- Gamma photon characteristics
 - Decay length of the excited state in the laboratory frame is ~2 m
 - Maximum energy photon is 44 keV
- Concept is being finalized and a Letter of Intent is expected in 2019

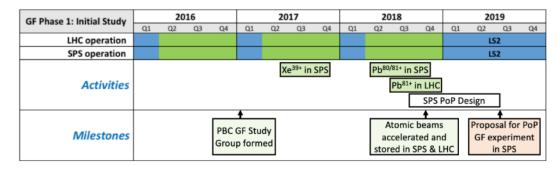

SPS Proof-of-Principle : SPS LSS6

12/07/2019


SPS Proof-of-Principle : Integration


12/07/2019

SPS Proof-of-Principle : Layout


 2 mirrors Fabry-Perot cavity with vertical crossing of 2.6°

- Apertures and shapes ensure the cavity is transparent for nominal SPS activities
- For forward X-ray we plan to use a movable ring shaped scintillating screen

SPS Proof-of-Principle : Timeline

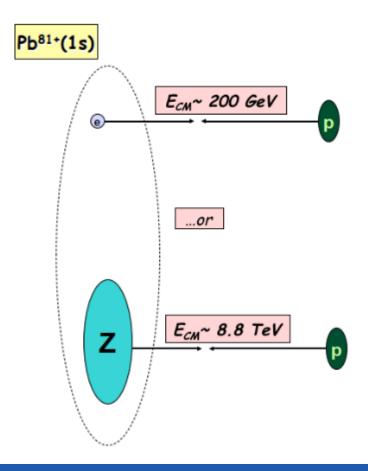
Acceleration and storage of PSI beams successfully demonstrated in 2017 and 2018.

GF Phase 2: SPS PoP	2020				2021				2022				2023			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
LHC operation	LS2															
SPS operation	LS2															
Activities	Laser procurem				ent				Install in SPS			SPS PoP MD beam tests TDR				
Milestones	Validate Laser radiation tolerance				All equipme ready for SF installation				PS and beam				concept and TDR			

12/07/2019

LHC scenario : High energy photon production

- Xe⁵³⁺
 - Hydrogen like Xenon
 - Lifetime of ~250 s in the SPS and ~20 h in the LHC
- Transition $(1s \rightarrow 2p)_{1/2}$ and $\Delta E=34$ keV
 - Long decay length of ~1.5 cm
 - Laser minimum energy of 5.2 eV
 - Maximum photon energy 182 MeV
 - Gamma flux : possibly limited by double photon absorption and limited laser power
 - Laser system : possible with the same as for PoP at its 5th harmonic


LHC scenario : High flux photon production

- Ca¹⁸⁺
 - He-Like calcium
 - Lifetime of ~30 s in the SPS and ~3 h in the LHC
- Transition $(1s \rightarrow 2p)_{3/2}$ and $\Delta E=3.9$ keV
 - Long decay length of 6 mm
 - Laser minimum energy of 0.58 eV
 - Maximum photon energy 26 MeV
 - Gamma flux : possibly limited by double photon absorption
 - Laser system : possible with the same as for PoP

LHC scenario : other ideas

- Photon production in the MeV range using Pb⁸¹⁺ in the LHC and minimal impact on the physics program
- Calcium cooling in the SPS for high brightness calcium beams in the LHC
- Direct PSI collisions of Pb⁸¹⁺ with protons in the LHC for electron-ion collisions

Milestones

Present

- 1. Production, acceleration and storage of PSI beams at CERN : Done
- 2. Development *ex nihilo* of the requisite Gamma Factory software tools : Advanced
- 3. Proof-of-Principle experiment in the SPS tunnel : Concept being finalized

Future

- 1. Realistic assessment of the Gamma Factory performance figures
- 2. Physics highlights of the Gamma Factory based research program
- 3. Gamma Factory concept report : Writing in progress ...

Conclusion

- New source of high flux and high energy photons
 - Unconventional but innovative use of CERN accelerator complex
 - Opportunities for the HEP and broader physics community
- The PoP concept is being finalized and we plan to submit a Letter of Intent
 - Possible start of the experiment in 2022
- Gamma Factory community
 - 60+ researchers from 20+ institutions, and growing
 - But it needs you !

Thank you

Gamma Factory - EPS-HEP 2019 28

Thank you

Gamma Factory - EPS-HEP 2019 29