Probing non-standard interactions with a muon decay-at-rest source

Sushant Raut

CP violation

- Measuring CP violation in the lepton sector is one of the main aims of neutrino physics today
- Data from T2K already shows a weak preference for $\delta_{\rm CP}$ in the lower half-plane, i.e. between -180° and 0°.
- A precision measurement of this parameter will play in important role in discriminating between new physics models: DUNE, T2HK, T2HKK, ESSvSB, etc.

$$P_{\mu e} = 4\sin^{2}\theta_{13}\sin^{2}\theta_{23}\frac{\sin^{2}((1-A)\Delta)}{(1-A)^{2}} + \alpha^{2}\sin^{2}2\theta_{12}\cos^{2}\theta_{23}\frac{\sin^{2}(A\Delta)}{A^{2}} + 2\alpha\sin\theta_{13}\sin2\theta_{12}\sin2\theta_{23}\cos(\Delta + \delta_{CP})\frac{\sin((1-A)\Delta)}{(1-A)}\frac{\sin(A\Delta)}{A}$$

where
$$\alpha = \Delta m_{21}^2 / \Delta m_{31}^2$$
, $\Delta = \Delta m_{31}^2 L / 4E$, $A = 2EV / \Delta m_{31}^2$
Akhmedov et al, 2004

µDAR setup

• One of the proposed experiments for precisely measuring δ_{CP} is the muon decay-at-rest or μ DAR setup Conrad et al, 2009

$$\mu^+ \to e^+ \, \nu_e \, \overline{\nu}_\mu \quad \longrightarrow \quad \overline{\nu}_e \, p \to n \, e^+$$

Conrad et al, 2009 Agarwalla et al, 2010 Alonso et al, 2010 Evslin et al, 2015

- Advantages:
 - Flux from three-body decay known exactly: Systematic uncertainty reduced
 - Inverse β -decay cross-section is large and well measured: Systematic uncertainty reduced
 - Delayed coincidence tag from neutron capture: Higher detection efficiency
 - No beam-on backgrounds: Fewer background events
- Hybrid setup: T2HK (v) + μ DAR (antiv) using the same SK/HK detectors

Experimental configuration

Experiment	Detector	Baseline	Total pot	Systematic errors
	mass	(km)		
	(kt)			
Conventional	187×2	295	$13.5 \times 10^{21} (\nu) +$	ν : 4.71% (4.13%) for app
T2HK			$13.5 \times 10^{21} \ (\overline{\nu})$	(disap), $\bar{\nu}$: 4.47% (4.16%) for
				app (disap). Errors are same
				for sg and bg.
T2HK with	187×2	295	$27 \times 10^{21} (\nu)$, No	Same as above for ν .
μ -DAR			ν 🔨	
μ -DAR	22.5(SK)	15(SK)	$1.1 \times 10^{25} (\bar{\nu})$	5% for both sg and bg (same
Evslin et al.	$+$ 187 \times	+	(same for both	for both SK and HK).
2015	2(HK)	$23(\mathrm{HK})$	SK and HK)	

Improvement over conventional T2HK not only for CPV discovery but also for excluding the wrong mass hierarchy and octant of θ_{23} . Agarwalla et al, 2017

Can this setup probe CP violation in the presence of non-standard neutrino interactions (NSIs)?

Non-standard interactions

 In the Standard Model, chargedcurrent (CC) interactions of neutrinos are flavour-diagonal

 With new physics, we can have a flavour violating NSI that modifies the neutrino production/ detection process

 Neutral-current (NC) NSIs affect the propagation of neutrinos through matter and are energy dependent, hence neglected here • NSI in neutrino production at DAR:

$$\mu^+ \to e^+ \nu_{\alpha} \, \overline{\nu}_{\beta} \qquad : \qquad \varepsilon_{\alpha\beta}^{\mu e}$$

• NSI in neutrino detection through IBD:

$$\overline{\nu}_{\rho} p \to n e^+ \qquad : \qquad \varepsilon_{\rho e}^{ud} \equiv \varepsilon_{\rho e}$$

• NSI in neutrino production at DAR:

$$\mu^+ \to e^+ \nu_{\alpha} \, \overline{\nu}_{\beta} \qquad : \qquad \varepsilon_{\alpha\beta}^{\mu e}$$

• NSI in neutrino detection through IBD:

$$\overline{\nu}_{\rho} p \rightarrow n e^{+} : \qquad \mathcal{E}_{\rho e}^{ud} \equiv \mathcal{E}_{\rho e}$$

$$\underbrace{\text{Most of this talk}}_{\text{Agarwalla, Ghosh, SR}}$$

• NSI in neutrino production at DAR:

$$\mu^+ \to e^+ \nu_{\alpha} \, \overline{\nu}_{\beta} \qquad : \qquad \mathcal{E}_{\alpha\beta}^{\mu e}$$

Brief discussion Ghosh, Mehta, Sinha, SR, Soumya

• NSI in neutrino detection through IBD:

$$\overline{\nu}_{\rho} p \rightarrow n e^{+} : \qquad \varepsilon_{\rho e}^{ud} \equiv \varepsilon_{\rho e}$$
Most of this talk
Agarwalla, Ghosh, SR

Detector NSI parameters

• Redefine the neutrino states in terms of the SM fields:

$$|\nu_{\alpha}^{d}\rangle = \frac{1}{N_{\alpha}} \left(|\nu_{\alpha}\rangle + \sum_{\gamma=e,\mu,\tau} \varepsilon_{\gamma\alpha} |\nu_{\gamma}\rangle\right) \qquad ; \qquad N_{\alpha} = \sqrt{\left[\left(1+\varepsilon\right)^{\dagger}\left(1+\varepsilon\right)\right]_{\alpha\alpha}}$$

Antusch et al, 2007

- In general there are 9 amplitudes + 9 phases = 18 new real parameters due to detector NSIs
- For DAR, energy < 50 MeV so only electrons can be produced in the final state. Therefore only ε_{ye} are relevant.
- Up to leading order, diagonal NSIs do not affect appearance channel probabilities. Only $\epsilon_{\mu e}$ and $\epsilon_{\tau e}$ are relevant.

$$|\varepsilon_{\mu e}^{L}| < 0.026, \ |\varepsilon_{\mu e}^{R}| < 0.037, \ |\varepsilon_{\tau e}^{L}| < 0.087, \ |\varepsilon_{\tau e}^{R}| < 0.12$$

NOMAD Collab, 2001,2003 Biggio et al, 2009

- Q1: Does the presence of NSIs affect the measurement of standard CPV at μDAR?
- Q2: Can µDAR measure CPV arising due to the NSI phase?

- We consider one NSI at a time (amplitude + phase)
- Assume the magnitude of the NSI to be a benchmark value of 0.05 (chosen to illustrate an impact on CP measurement, same order of magnitude as current bounds from NOMAD)

Probability level discussion

$$\begin{aligned} \Delta P_{\mu e}^{\rm vac}(\varepsilon_{\mu e}) &\simeq -4|\varepsilon_{\mu e}|\sin\theta_{13}\cos 2\theta_{23}\sin\theta_{23}\cos(\phi_{\mu e}+\delta_{\rm CP})\sin^2\Delta\\ &-2|\varepsilon_{\mu e}|\sin\theta_{13}\sin\theta_{23}\sin(\phi_{\mu e}+\delta_{\rm CP})\sin 2\Delta\\ &+|\varepsilon_{\mu e}|\alpha\Delta\sin 2\theta_{12}\sin 2\theta_{23}\sin\theta_{23}\cos\phi_{\mu e}\sin 2\Delta\\ &-2|\varepsilon_{\mu e}|\alpha\Delta\sin 2\theta_{12}\cos\theta_{23}\sin\phi_{\mu e}\left[1-2\sin^2\theta_{23}\sin^2 2\Delta\right]\end{aligned}$$

$$\Delta P_{\mu e}^{\rm vac}(\varepsilon_{\tau e}) \simeq 4|\varepsilon_{\tau e}|\sin\theta_{13}\sin2\theta_{23}\sin\theta_{23}\cos(\phi_{\tau e}+\delta_{\rm CP})\sin^2\Delta +2|\varepsilon_{\tau e}|\alpha\Delta\sin2\theta_{12}\sin2\theta_{23}\cos\theta_{23}\sin\Delta\cos(\Delta-\phi_{\tau e}).$$

July 2019

Probability level discussion

$$\begin{aligned} \Delta P_{\mu e}^{\rm vac}(\varepsilon_{\mu e}) &\simeq -4|\varepsilon_{\mu e}|\sin\theta_{13}\cos2\theta_{23}\sin\theta_{23}\cos(\phi_{\mu e}+\delta_{\rm CP})\sin^2\Delta\\ &-2|\varepsilon_{\mu e}|\sin\theta_{13}\sin\theta_{23}\sin(\phi_{\mu e}+\delta_{\rm CP})\sin2\Delta\\ &+|\varepsilon_{\mu e}|\alpha\Delta\sin2\theta_{12}\sin2\theta_{23}\sin\theta_{23}\cos\phi_{\mu e}\sin2\Delta\\ &-2|\varepsilon_{\mu e}|\alpha\Delta\sin2\theta_{12}\cos\theta_{23}\sin\phi_{\mu e}\left[1-2\sin^2\theta_{23}\sin^22\Delta\right] \end{aligned}$$

,

$$\Delta P_{\mu e}^{\rm vac}(\varepsilon_{\tau e}) \simeq 4|\varepsilon_{\tau e}|\sin\theta_{13}\sin2\theta_{23}\sin\theta_{23}\cos(\phi_{\tau e}+\delta_{\rm CP})\sin^2\Delta +2|\varepsilon_{\tau e}|\alpha\Delta\sin2\theta_{12}\sin2\theta_{23}\cos\theta_{23}\sin\Delta\cos(\Delta-\phi_{\tau e}) .$$

July 2019

Bi-probability plots: $\varepsilon_{\mu e}$

July 2019

Bi-probability plots: $\varepsilon_{\tau e}$

CPV discovery: $\varepsilon_{\mu e}$

CPV discovery: $\epsilon_{\mu e}$

Table 2. 3σ CP coverage due to standard CP phase in the presence of $\epsilon_{\mu e}$

CPV discovery: $\varepsilon_{\tau e}$

July 2019

CPV discovery: $\varepsilon_{\tau e}$

Table 3. 3σ CP coverage due to standard CP phase in the presence of $\epsilon_{\tau e}$

Correlations between phases

 $\Delta P_{\mu e}^{\rm vac}(\varepsilon_{\tau e}) \simeq 4|\varepsilon_{\tau e}|\sin\theta_{13}\sin2\theta_{23}\sin\theta_{23}\cos(\phi_{\tau e}+\delta_{\rm CP})\sin^2\Delta$ $+2|\varepsilon_{\tau e}|\alpha\Delta\sin2\theta_{12}\sin2\theta_{23}\cos\theta_{23}\sin\Delta\cos(\Delta-\phi_{\tau e}).$

Variation of the NSI amplitude

Source NSI parameters

$$\mu^{+} \rightarrow e^{+} v_{\alpha} \overline{v}_{\beta} \qquad : \qquad \mathcal{E}_{\alpha\beta}^{\mu e}$$

$$|\overline{v}_{\mu}^{s} v_{e}^{s}\rangle = \frac{1}{N} \left(|\overline{v}_{\mu}\rangle + \sum_{\gamma=e,\mu,\tau} \varepsilon_{\mu\gamma}^{\mu e^{*}} |\overline{v}_{\gamma}\rangle \right) \left(|v_{e}\rangle + \sum_{\sigma=e,\mu,\tau} \varepsilon_{e\sigma}^{\mu e} |v_{\sigma}\rangle \right) \qquad ;$$

$$N = \sqrt{\left[\left(1 + \varepsilon \right)^{\dagger} \left(1 + \varepsilon \right) \right]_{ee}} \sqrt{\left[\left(1 + \varepsilon \right)^{\dagger} \left(1 + \varepsilon \right) \right]_{\mu\mu}}$$

$$P(\overline{v}_{\mu}^{s} \rightarrow \overline{v}_{e}) = \sum_{X} P(\overline{v}_{\mu}^{s} v_{e}^{s} \rightarrow \overline{v}_{e} v_{X})$$

• The only relevant NSI parameters are $\varepsilon^{\mu e}_{\mu e}$, $\varepsilon^{\mu e}_{\mu \mu}$ and $\varepsilon^{\mu e}_{\mu \tau}$. $P(\nu^s_{\mu} \rightarrow \nu_e) = 4 \sin^2 \theta_{13} \sin^2 \theta_{23} \sin^2 \Delta$

+ $2\alpha \sin \theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos(\Delta + \delta_{\rm CP}) \Delta \sin \Delta$

$$-4|\varepsilon_{\mu e}^{\mu e}|\sin\theta_{13}\sin\theta_{23}\sin(\Delta+\delta_{\rm CP}+\phi_{\mu e}^{\mu e})\sin\Delta$$

$$- 2|\varepsilon_{\mu e}^{\mu e}| \alpha \sin 2\theta_{12} \cos \theta_{23} \sin \phi_{\mu e}^{\mu e} \Delta , \qquad \text{Kopp et al, 2007}$$

Bounds on NSI parameters

July 2019

Bounds on NSI parameters

Summary

- μDAR which has been shown to have good sensitivity to standard oscillation physics can also be used to probe CC NSIs.
- No interference with NC NSIs due to the low energy involved.
- Spectral information will be important to measure the detector NSI $\epsilon_{\mu e}$
- The standard CP sensitivity is not compromised due to the existence of new physics. CPV due to the new phases can also be discovered at this setup.
- Correlations between the standard and non-standard phases can be probed
- Bounds on the source NSI parameters can be improved beyond the existing ones.

Summary

- μDAR which has been shown to have good sensitivity to standard oscillation physics can also be used to probe CC NSIs.
- No interference with NC NSIs due to the low energy involved.
- Spectral information will be important to measure the detector NSI $\epsilon_{\mu e}$
- The standard CP sensitivity is not compromised due to the existence of new physics. CPV due to the new phases can also be discovered at this setup.
- Correlations between the standard and non-standard phases can be probed
- Bounds on the source NSI parameters can be improved beyond the existing ones.

July 2019