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WHAT ARE SOLAR NEUTRINOS?

• Fusion reactions that convert
p → 4He produce ν

• Study ν using the sun
→ oscillation parameters
→ MSW-LMA (matter effect)

• Study the sun using ν
→ fusion rates
→ metallicity

99% of the solar energy

Direct probe of the sun’s core

Intense natural ν beam
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< 1% solar energy

Alternative way to convert p → 4He, closed-loop catalyzed CNO chain
Has never been experimentally observed
Expected to be the main source of energy in heavier stars

WHAT ARE SOLAR NEUTRINOS?

Credit: Wikimedia Commons



7
WHAT ARE SOLAR NEUTRINOS?

Solar metallicity

abundance of elements 
heavier than He

High M Low M

Different fluxes are 
predicted by different 
Standard Solar 
Models 

Metallicity is 
fundamental but still 
poorly understood!

Metallicity → opacity of the solar plasma → central T°C → ν fluxes

N. Vinyoles et al., “A new Generation of Standard Solar Models,” 
Astrophys. J., vol. 835, no. 2, p. 202 (2017)

http://doi.org/10.3847/1538-4357/835/2/202
http://doi.org/10.3847/1538-4357/835/2/202
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WHAT IS BOREXINO?

the largest

underground 
research center

in the world

the world's

most radio-pure

liquid scintillator 
detector

Credit: Laboratori
Nazionali
del Gran Sasso

LNGSLNGS

ItalyItaly

BorexinoBorexino
Credit: Google Maps

GERDAGERDA CUORECUORE

● 3800m water 
equivalent

● μ suppressed 
by factor ~106
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WHAT IS BOREXINO?

[for scale]

● 50 keV @ 1 MeV
12 cm @ 1 MeV
~500 p.e./MeV

● Lowest energy threshold

● Unprecedented 
radiopurity

▸ high purity materials

▸ Using Fiducial Volume

▸ Purification campaign

~200 μ PMTs
water tank

Stainless 
steel sphere

Fiducial 
volume

~2000
internal PMTs

Nylon
vessels

Buffer

the best for solar neutrinos
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WHAT IS BOREXINO?
before

after

Inner detector PMTs

Nylon vessels
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WHAT DID WE MEASURE?

▸ pp → 9.5%

▸ 7Be → 2.7%
× 2 more precise than theory

▸ 8B → 8%

▸ pep → 16%
> 5σ discovery

▸ hep → 90% CL upper limit
NEW!

▸ CNO → 95% CL upper limit
most stringent so far

M. Agostini et al., (Borexino Collaboration), Nature, 562, 505 (2018)

Comprehensive measurement of pp-chain solar neutrinos with Borexino

All measurements have improved precision

http://doi.org/10.1038/s41586-018-0624-y
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HOW DID WE DO IT?

Theory:
ν spectra

Data:
ν + backgrounds

fit
neutrino 

&
background

rates



15
HOW DID WE DO IT?

Theory:
ν spectra

Data:
ν + backgrounds

fit
neutrino 

&
background

rates

Compton shoulder
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High energy region analysis

2008
2010

2011
2016

Phase I Phase II

purification

LER → pp, pep, 7Be; CNO (0.19 - 2.93 MeV)
First simultaneous extraction of
pp, pep and 7Be rates 

HER → 8B; hep (3.2 - 16 MeV)
Lowest energy threshold

Some backgrounds can be measured 
independently and constrained

HOW DID WE DO IT?

Low energy region analysis

HER

LER

HER and LER have
different backgrounds
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HOW DID WE DO IT?

no cuts

µ and
µ daughter cut

Fiducial Volume cut

Three-fold 
coincidence cut

(2.2 MeV)(29.4 min)
(250 μs)

LER data selection 99.992% 
efficiency

14C

210Po

11C
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HOW DID WE DO IT?

8% 11C
~64% exposure

92% 11C
~36% exposure

LER multivariate fit

TFC
subtracted

TFC
tagged
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HOW DID WE DO IT?
radial pulse shape

TFC-sub TFC-tag
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HOW DID WE DO IT?

● Independent radial fits
● × 3 increase in target mass, × 10 increase 

in exposure
● No assumption on  Eν energy spectrum!
→ no dependence on Pee(Eν)
→ probe deviations from MSW

HER data selection:
● neutron cut
● fast cosmogenics cut
● 10C cut
● 214Bi-Po cut

HER-I HER-II

3.2 – 5.7 MeV
Background: natural radioactivity

5.7 - 16 MeV
Background: external γ rays
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WHAT ARE THE IMPLICATIONS?

Real time picture of the core of the sun

→ total power from the nuclear reactions:

L = 3.89 ± 0.42 x 1033 erg s-1

compatible with photon output

L = 3.846 ± 0.015 x 1033 erg s-1

→ experimentally confirm nuclear origin of the solar power

best precision by a single solar-ν experiment

→ proves the sun has been in thermodynamic equilibrium 
over 105 years time scale

Credit: NASA/SDO
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Relative intensity of pp-I and pp-II

Theoretical prediction:

R
I/II

(HM) = 0.180 ± 0.011

R
I/II

(LM) = 0.161 ± 0.010

New experimental result:

R = 0.178 ± 0.027

→ compatible with expected values

WHAT ARE THE IMPLICATIONS?
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f(8B)

f(
7
B

e)

→ weak hint towards high metallicity

WHAT ARE THE IMPLICATIONS?
7Be and 8B have the largest difference in HZ/LZ 
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Borexino is the only experiment that can probe the νe survival 
probability in both vacuum and matter matter  dominated regions

Disfavour vacuum oscillations at 95% CL

vacuum
dominated

matter matter 
dominateddominated

transition 
region

WHAT ARE THE IMPLICATIONS?
νe

 →
 ν

e 
su

rv
iv

al
 p

ro
b

ab
ili

ty
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WHAT’S NEXT?

CNO CNO νν
measurement

can solve the 
metallicity puzzle

2008
2010

2011
2016

Phase I Phase II

purification

Phase IIIPhase III

CNOCNO

210210BiBi

peppep
Challenges:

● Extremely low rate

● Shape similar to 210210BiBi and peppep

new trigger system
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WHAT’S NEXT? → TOWARDS CNOCNO

210210Pb Pb →  210210BiBi  →  210210PoPo  →  206206PbPb
● Disentangle vessel 210Po contamination
(not in equilibrium)

● thermal
stabilization

Constrain the rate of 210210BiBi (β))(β)) by measuring  210210Po Po (α))(α))
(the only α → event by event basis)

Sensitivity studies
with toy MC → possibility 
to get a CNO measurementCNO measurement 
between 2 and 4σ

32y     7.23d   199.1d

convection

northnorth

southsouth

thermalthermal
insulationinsulation
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SUMMARY

● Solar νs are a useful tool to probe solar models and neutrino 
physics

● The Borexino detector is perfect for solar neutrino analysis due to 
its radiopurity

● New Nature publication by Borexino reports a comprehensive 
study of the pp-chain νs with improved precision:
pp (9.5%), 7Be (2.7%), 8B (8%), pep (16%), hep (90% CL up. lim.)

● It was done using extensive Borexino dataset and a multivariate fit 
approach

● The results show a weak hint towards the high metallicity 
hypothesis, exclude vacuum oscillations with 95% CL

● Sensitivity studies show promising perspective for the
CNO ν measurement
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Thanks for
listening!



Backup



34
PREVIOUS AND NEW RESULTS

Neutrino Previous New (2018)

pp 144 ± 13 ± 10 → 11.5% (2014)                       → 9.5%

7Be 48.3 ± 2.0 ± 0.9 → 4.5% (2014)                          → 2.7%

pep 3.1 ± 0.6 ± 0.3 → 21.5% (2014)
                            → 16.5% (HZ)

                            → 15.5% (LZ)

8B 0.22 ± 0.04 ± 0.01 → 18.5% (2010)                             → 7.5%

CNO < 12 at 95% CL (2014) < 8.1 at 95%CL

hep – < 0.002 at 90%CL → NEW!

134±10−10
+6

48.3±1.1−0.7
+0.4

2.43±0.36−0.22
+0.15

2.35±0.36−0.24
+0.15

0.223−0.016−0.006
+0.015+0.006
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SOLAR NEUTRINO RESULTS

● pep are the only ν that show difference in HZ/LZ
● CNO limit is identical for HZ or LZ assumption on pp/pep constraint
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TOWARDS CNO MEASUREMENT

α and β have different hit 
time distributions

Multi-Layer Perceptron 
variable to discriminate 
between α and β

214Po(α))

214Bi(β))



37
THE SOLAR METALLICITY PUZZLE

(m
et

a
ls

)

High M Low M

metallicity

Helioseismology (surface seismic waves) → low M agrees less

Solar surface composition → lower than assumed before

High M
Low M
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BOREXINO STRUCTURE

[for scale]

Outer
detector

Water tank (2100t)
Shield + μ veto

~200 PMTs

Fiducial volume
~70t

Software cut
Remove noise

Nylon vessels
Shield from 

PMTs and SSS
Barrier for Rn 
Create buffer

Stainless Steel 
Sphere

R = 6.85m

Inner detector
~2000 PMTs

Buffer
Diluted LS

Inner Vessel
R = 4.25m
~280t LS

● 3800m water 
equivalent

● 50 keV @ 1 MeV

● 12 cm @ 1 MeV

● 551 pe/MeV
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High energy region analysis (3.2 - 16 MeV)

2008
2010

2011
2016

Phase I Phase II

purification

HER → 8B; hep 

● not sensitive to low 
energy backgrounds

● Whole IV (280 t) is 
used (+ z-cut in HER-I), 
unlike LER which uses 
Fiducial Volume (70t)

HER AND LER INFORMATION

LER → pp, pep and 7Be; CNO;  
8B is constrained to the value from HER
● pp, pep and 7Be: CNO is constrained to HZ/LZ 

→ 2 results for pep for HZ/LZ, the rest no 
difference

● CNO limit: pp/pep ratio is constrained (HZ/LZ)
● hep limit: counting analysis

Low energy region analysis (0.19 - 2.93 MeV)
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COMPTON & DETECTOR RESPONSE

ν spectra

recoiled e- 
spectra

The electron takes a fraction of the ν energy
→ Compton shoulder

The PDFs for the fit are constructed in two ways
(part of systematics)

● MC simulation of all the processes (tuned on 
calibration data)

● Analytical description of the detector response, 
some nuisance parameters are free in the fit
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ENERGY ESTIMATORS

# of triggered PMTs# of hits (photons) 

# of photoelectrons (charge)

Monte Carlo method: simulate detector response

Analytical method:
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DIFFERENT FIT METHODS

Monte Carlo Analytical

Describe mathematically
Detector
response Full simulation

Cons
More free parameters

→
more correlations

Pros
Tuning done on 
calibration data

independent of analysis 
data

Cannot account for 
unknown variations

● More flexible
● dark noise convolution
● easier to deal with 14C

Free 
parameters

Rates of signal and 
background

+ light yield
+ 6 response function 

parameters
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SYSTEMATICS
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energy independent

MSW-LMA (MATTER EFFECT)

mixing angle in matter, depends on Emixing angle in matter, depends on Eνν
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NEUTRINO SPECTRA

U. F. Katz and C. Spiering, “High-Energy Neutrino Astrophysics: Status and Perspectives,”
Prog. Part. Nucl. Phys., vol. 67, pp. 651–704, 2012

DOI:  10.1016/j.ppnp.2011.12.001
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