Comprehensive measurement of pp-chain solar neutrinos with Borexino

Mariia Redchuk on behalf of the Borexino collaboration

¹ Institut f
ür Kernphysik, Forschungszentrum J
ülich, Germany
 ² III. Physikalisches Institut B, RWTH Aachen, Germany

RNTHAACHEN UNIVERSITY

11.07.2019

EPS-HEP2019

Ghent, Belgium

Comprehensive measurement of poly solar neutrinos with Borexino

Mariia Redchuk on behalf of the Borexino collaboration

¹ Institut f
ür Kernphysik, Forschungszentrum J
ülich, Germany
 ² III. Physikalisches Institut B, RWTH Aachen, Germany

11.07.2019 **EPS-HEP2019** Ghent, Belgium

Mitglied der Helmholtz-Gemeinschaft

OUTLINE

Comprehensive measurement of pp-chain solar neutrinos with Borexino

- 1. What are solar neutrinos?
- 2. What is **Borexino**?
- 3. What did we measure and how?
- 4. What are the **implications**?
- 5. What's next?

- 1. What are solar neutrinos?
- 2. What is Borexino?
- 3. What did we measure and how?
- 4. What are the implications?
- 5. What's next?

6. Summary

WHAT ARE SOLAR NEUTRINOS?

Fusion reactions that convert
 p → ⁴He produce V

Intense natural v beam

Study V using the sun
 → oscillation parameters
 → MSW-LMA (matter effect)

Direct probe of the sun's core

- Study the sun using V
 - \rightarrow fusion rates
 - \rightarrow metallicity

pp chain

WHAT ARE SOLAR NEUTRINOS?

Alternative way to convert $p \rightarrow {}^{4}He$, closed-loop catalyzed CNO chain Has never been experimentally observed Expected to be the main source of energy in heavier stars

< 1% solar energy $^{12}C+p \rightarrow ^{13}N+\gamma$ $^{13}N \rightarrow ^{13}C + e^{+} + v_{e}$ **CNO-v** $^{13}C+p \rightarrow ^{14}N+\gamma$ $^{17}\text{O}+p \rightarrow ^{14}\text{N}+^{4}\text{He}$ $^{14}N+p \rightarrow ^{15}O+\nu$ $^{15}O \rightarrow ^{15}N + e^{+} + v_{e}$ $^{17}F \rightarrow ^{17}O + e^+ + v_e$ $^{16}\text{O+p}\rightarrow^{17}\text{F+}\gamma$ $^{15}N+p \rightarrow ^{4}He + ^{12}C$ $^{15}N+p\rightarrow^{16}O+\gamma$ 99.96% 0.04%

6

Forschungszentrum

Mitglied der Helmholtz-Gemeinschaft

WHAT ARE SOLAR NEUTRINOS?

Solar metallicity

abundance of elements heavier than He

Solar ν			Difference
pp	5.98 $(1 \pm 0.006) \times 10^{10}$	$6.03 (1 \pm 0.005) \times 10^{10}$	0.83%
^{7}Be	$4.93 \ (1 \pm 0.06) \times 10^9$	$4.50 \ (1 \pm 0.06) \times 10^9$	8.72%
pep	$1.44 \ (1 \pm 0.009) \times 10^8$	$1.46 \ (1 \pm 0.009) \times 10^8$	1.39%
CNO	$4.88 \ (1 \pm 0.11) \times 10^8$	$3.51~(1\pm0.010)\times10^8$	28.07%
^{8}B	$5.46~(1\pm0.12)\times10^{6}$	$4.50~(1\pm0.12)\times10^{6}$	17.58%

Metallicity \rightarrow opacity of the solar plasma \rightarrow central T°C \rightarrow V fluxes

7

Mitglied der Helmholtz-Gemeinschaft

N. Vinyoles et al., "A new Generation of Standard Solar Models," Astrophys. J., vol. 835, no. 2, p. 202 (2017)

OUTLINE

1. What are solar neutrinos?

- 2. What is **Borexino**?
- 3. What did we measure and how?
- 4. What are the implications?
- 5. What's next?

6. Summary

WHAT IS BOREXINO?

the world's

most radio-pure

liquid scintillator detector

the largest underground research center in the world

- 3800m water equivalent
- µ suppressed by factor ~10⁶

Credit: Laboratori Nazionali del Gran Sasso

WHAT IS BOREXINO?

- 50 keV @ 1 MeV
 12 cm @ 1 MeV
 ~500 p.e./MeV
- Lowest energy threshold
- Unprecedented radiopurity
 - high purity materials
 - Using Fiducial Volume
 - Purification campaign

the best for solar neutrinos

WHAT IS BOREXINO?

Inner detector PMTs

Nylon vessels

OUTLINE

- 1. What are solar neutrinos?
- 2. What is **Borexino**?
- 3. What did we measure and how?
- 4. What are the implications?
- 5. What's next?

6. Summary

WHAT DID WE MEASURE?

13

Comprehensive measurement of pp-chain solar neutrinos with Borexino

M. Agostini et al., (Borexino Collaboration), Nature, 562, 505 (2018)

All measurements have improved precision

- ▶ pp → 9.5%
- ⁷Be → 2.7%
 × 2 more precise than theory
- ⁸B → 8%
- ▶ pep → 16%
 > 5σ discovery
- ► hep → 90% CL upper limit NEW!
- ► CNO → 95% CL upper limit most stringent so far

Solar neutrino flux [cm⁻² s⁻¹]

LER \rightarrow pp, pep, ⁷Be; CNO (0.19 - 2.93 MeV) First simultaneous extraction of

HER \rightarrow ⁸B; hep (3.2 - 16 MeV)

Some backgrounds can be **measured** independently and constrained

HER data selection:

- neutron cut
- fast cosmogenics cut
- ¹⁰C cut
- ²¹⁴Bi-Po cut

Mitglied der Helmholtz-Gemeinschaft

- Independent radial fits
- × 3 increase in target mass, × 10 increase in exposure
- No assumption on E_v energy spectrum!
- \rightarrow no dependence on Pee(Ev)
- → probe **deviations** from **MSW**

OUTLINE

- 1. What are solar neutrinos?
- 2. What is **Borexino**?
- 3. What did we measure and how?

4. What are the **implications**?

5. What's next?

6. Summary

WHAT ARE THE IMPLICATIONS?

Real time picture of the core of the sun

→ total power from the nuclear reactions: $L = 3.89 \pm 0.42 \times 10^{33} \text{ erg s}^{-1}$ compatible with photon output $L = 3.846 \pm 0.015 \times 10^{33} \text{ erg s}^{-1}$

 \rightarrow experimentally confirm nuclear origin of the solar power **best precision** by a single solar-V experiment

 \rightarrow proves the sun has been in thermodynamic equilibrium over 10⁵ years time scale

WHAT ARE THE IMPLICATIONS?

Relative intensity of pp-I and pp-II

Theoretical prediction:

 $R_{I/II}(HM) = 0.180 \pm 0.011$ $R_{I/II}(LM) = 0.161 \pm 0.010$

New experimental result: $R = 0.178 \pm 0.027$

→ compatible with **expected values**

Forschungszentrum

WHAT ARE THE IMPLICATIONS?

⁷Be and ⁸B have the largest difference in HZ/LZ

WHAT ARE THE IMPLICATIONS?

Borexino is the only experiment that can probe the Ve survival probability in both vacuum and matter dominated regions

Disfavour vacuum oscillations at **95% CL**

25;

OUTLINE

- 1. What are solar neutrinos?
- 2. What is **Borexino**?
- 3. What did we measure and how?
- 4. What are the **implications**?
- 5. What's next?

6. Summary

WHAT'S NEXT?

Forschungszentrum

WHAT'S NEXT? \rightarrow TOWARDS CNO

Constrain the rate of ²¹⁰Bi (β) by measuring ²¹⁰Po (α) (the only $\alpha \rightarrow$ event by event basis)

convection

 $^{32y} 7.23d 199.1d$ $^{210}Pb \rightarrow ^{210}Bi \rightarrow ^{210}Po \rightarrow ^{206}Pb$

• Disentangle vessel ²¹⁰Po contamination (not in equilibrium)

thermal stabilization

Sensitivity studies

with toy MC \rightarrow possibility to get a **CNO measurement** between 2 and 4σ

OUTLINE

- 1. What are solar neutrinos?
- 2. What is **Borexino**?
- 3. What did we measure and how?
- 4. What are the **implications**?
- 5. What's **next**?
- 6. Summary

SUMMARY

- Solar Vs are a useful tool to probe solar models and neutrino physics
- The **Borexino detector** is perfect for **solar neutrino analysis** due to its **radiopurity**
- New Nature publication by Borexino reports a comprehensive study of the pp-chain vs with improved precision: pp (9.5%), ⁷Be (2.7%), ⁸B (8%), pep (16%), hep (90% CL up. lim.)
- It was done using extensive Borexino dataset and a multivariate fit approach
- The results show a **weak hint** towards the **high metallicity** hypothesis, **exclude** vacuum oscillations with **95% CL**
- Sensitivity studies show promising perspective for the CNO v measurement

Borexino Collaboration

;31;

POLITECNICO MILANO 1863

Mitglied der Helmholtz-Gemeinschaft

Backup

Mitglied der Helmholtz-Gemeinschaft

PREVIOUS AND NEW RESULTS

Neutrino	Previous	New (2018)
рр	144 ± 13 ± 10 → 11.5% (2014)	$134 \pm 10^{+6}_{-10} \rightarrow 9.5\%$
⁷ Be	48.3 ± 2.0 ± 0.9 → 4.5% (2014)	$48.3 \pm 1.1_{-0.7}^{+0.4} \rightarrow 2.7\%$
рер	3.1 ± 0.6 ± 0.3 → 21.5% (2014)	$2.43 \pm 0.36^{+0.15}_{-0.22} \rightarrow 16.5\%$ (HZ) $2.35 \pm 0.36^{+0.15}_{-0.24} \rightarrow 15.5\%$ (LZ)
⁸ B	0.22 ± 0.04 ± 0.01 → 18.5% (2010)	$0.223^{+0.015+0.006}_{-0.016-0.006} \rightarrow 7.5\%$
CNO	< 12 at 95% CL (2014)	< 8.1 at 95%CL
hep	_	< 0.002 at 90%CL → NEW!

SOLAR NEUTRINO RESULTS

Solar neutrino	Rate (counts per day per 100 t)	Flux (cm ^{-2} s ^{-1})	Flux–SSM predictions (cm ⁻² s	-1)
рр	$134\!\pm\!10^{+6}_{-10}$	$(6.1\!\pm\!0.5^{+0.3}_{-0.5})\times10^{10}$	$\begin{array}{c} 5.98(1.0\pm0.006)\times10^{10}\\ 6.03(1.0\pm0.005)\times10^{10} \end{array}$	(HZ) (LZ)
⁷ Be	$48.3 \!\pm\! 1.1^{+0.4}_{-0.7}$	$(4.99 {\pm} 0.11 {}^{+0.06}_{-0.08}) \times 10^9$	$\begin{array}{l} 4.93(1.0\pm0.06)\times10^9 \\ 4.50(1.0\pm0.06)\times10^9 \end{array}$	(HZ) (LZ)
pep (HZ)	$2.43 \!\pm\! 0.36 \substack{+0.15 \\ -0.22}$	$(1.27\!\pm\!0.19^{+0.08}_{-0.12})\times10^8$	$\begin{array}{c} 1.44(1.0\!\pm\!0.01)\!\times\!10^8 \\ 1.46(1.0\!\pm\!0.009)\!\times\!10^8 \end{array}$	(HZ) (LZ)
pep (LZ)	$2.65 \!\pm\! 0.36^{+0.15}_{-0.24}$	$(1.39\!\pm\!0.19^{+0.08}_{-0.13})\times10^8$	$\begin{array}{c} 1.44(1.0\!\pm\!0.01)\!\times\!10^8 \\ 1.46(1.0\!\pm\!0.009)\!\times\!10^8 \end{array}$	(HZ) (LZ)
⁸ B _{HER-I}	$0.136\substack{+0.013+0.003\\-0.013-0.003}$	$(5.77^{+0.56+0.15}_{-0.56-0.15})\times10^{6}$	$\begin{array}{c} 5.46(1.0\pm0.12)\times10^6 \\ 4.50(1.0\pm0.12)\times10^6 \end{array}$	(HZ) (LZ)
⁸ B _{HER-II}	$0.087\substack{+0.080+0.005\\-0.010-0.005}$	$(5.56^{+0.52+0.33}_{-0.64-0.33})\times 10^6$	$\begin{array}{c} 5.46(1.0\pm0.12)\times10^6 \\ 4.50(1.0\pm0.12)\times10^6 \end{array}$	(HZ) (LZ)
⁸ B _{HER}	$0.223\substack{+0.015+0.006\\-0.016-0.006}$	$(5.68^{+0.39+0.03}_{-0.41-0.03})\times 10^6$	$\begin{array}{c} 5.46(1.0\pm0.12)\times10^6\\ 4.50(1.0\pm0.12)\times10^6\end{array}$	(HZ) (LZ)
CNO	<8.1 (95% C.L.)	${<}7.9 \times 10^8$ (95% C.L.)	$\begin{array}{c} 4.88(1.0\pm0.11)\times10^8\\ 3.51(1.0\pm0.10)\times10^8\end{array}$	(HZ) (LZ)
hep	<0.002 (90% C.L.)	$<2.2 \times 10^{5}$ (90% C.L.)	$7.98(1.0\pm0.30)\times10^{3}\\ 8.25(1.0\pm0.12)\times10^{3}$	(HZ) (LZ)

• **pep** are the only **V** that show **difference** in HZ/LZ

• CNO limit is identical for HZ or LZ assumption on pp/pep constraint

TOWARDS CNO MEASUREMENT

THE SOLAR METALLICITY PUZZLE

metallicity

Helioseismology (surface seismic waves) → **low** M agrees **less**

Solar surface composition \rightarrow lower than assumed before

37:

BOREXINO STRUCTURE

Forschungszentrum

HER AND LER INFORMATION

HER \rightarrow ⁸B; hep

- not sensitive to low energy backgrounds
- Whole IV (280 t) is used (+ z-cut in HER-I), unlike LER which uses Fiducial Volume (70t)

Mitglied der Helmholtz-Gemeinschaft

LER \rightarrow **pp**, **pep** and ⁷Be; CNO;

- ⁸B is constrained to the value from HER
- **pp**, **pep** and ⁷Be: CNO is **constrained** to HZ/LZ
 → 2 results for **pep** for HZ/LZ, the rest no difference
- CNO limit: pp/pep ratio is constrained (HZ/LZ)
- hep limit: counting analysis

COMPTON & DETECTOR RESPONSE

Mitglied der Helmholtz-Gemeinschaft

The electron takes a **fraction** of the V energy \rightarrow **Compton shoulder**

40

The **PDFs for the fit** are constructed in two ways (part of **systematics**)

- MC simulation of all the processes (tuned on calibration data)
- Analytical description of the detector response, some nuisance parameters are free in the fit

ENERGY ESTIMATORS

of hits (photons)

of triggered PMTs

of photoelectrons (charge)

Monte Carlo method: simulate detector response

Analytical method:

$$N_{pe}(E) = LY \left(\; Q(E) \cdot E \; + \; f_{Cher} \cdot Ch(E)
ight)$$

$$N_{ ext{p}}(E) = N_{ ext{live}}igg(1-e^{-rac{N_{ ext{pe}}}{N_{ ext{live}}}}igg[1+p_trac{N_{ ext{pe}}}{N_{ ext{live}}}igg]igg)igg(1-g_Crac{N_{ ext{pe}}}{N_{ ext{live}}}igg)$$

SYSTEMATICS

	<i>pp</i> neutrinos		⁷ Be neutrinos		<i>pep</i> neutrinos	
Source of uncertainty	-%	+%	-%	+%	-%	+%
Fit models (see text)	-4.5	+0.5	-1.0	+0.2	-6.8	+2.8
Fit method (analytical/Monte Carlo)	-1.2	+1.2	-0.2	+0.2	-4.0	+4.0
Choice of the energy estimator	-2.5	+2.5	-0.1	+0.1	-2.4	+2.4
Pile-up modeling	-2.5	+0.5	0	0	0	0
Fit range and binning	-3.0	+3.0	-0.1	+0.1	-1.0	+1.0
Inclusion of the ⁸⁵ Kr constraint	-2.2	+2.2	0	+0.4	-3.2	0
Live time	-0.05	+0.05	-0.05	+0.05	-0.05	+0.05
Scintillator density	-0.05	+0.05	-0.05	+0.05	-0.05	+0.05
Fiducial volume	-1.1	+0.6	-1.1	+0.6	-1.1	+0.6
Total systematics (%)	-7.1	+4.7	-1.5	+0.8	-9.0	+5.6

Relevant sources of systematic uncertainties and their contributions to the measured neutrino interaction rates for the LER analysis.

Forschungszentrum

Mitglied der Helmholtz-Gemeinschaft

NEUTRINO SPECTRA

DOI: 10.1016/j.ppnp.2011.12.001

Mitglied der Helmholtz-Gemeinschaft

