

- T2K (Tokai to Kamioka)
- v_{μ} and \overline{v}_{μ} disappearance
- \overline{v}_{e} appearance
- v_{e} appearance and δ_{CP}
- T2K-II
- The future
- PRL Editor's Choice paper with the 2017 analysis PRL **121**, 171802 (2018)
- Results also available from Neutrino 2018: "T2K Status, Results, and Plans", Talk at XXVIII International Conference on Neutrino Physics and Astrophysics, 4-9 June 2018, Heidelberg, Germany, DOI: 10.5281/zenodo.1286751, URL: https://doi.org/10.5281/zenodo.1286751

Dr Laura Kormos on behalf of the T2K Collaboration

EPS-HEP July 10-17, 2019

- J-PARC beam • v_{μ}
- Near detectors:
 INGRID on-axis
 - ND280 off-axis
- Far detector:
 SK
 - off-axis

Mixing of three neutrinos

Current knowledge $\theta_{12} \sim 33^{\circ}$ $\theta_{23} \sim 45^{\circ}$ $\theta_{13} \sim 9^{\circ}$ $\Delta m_{21}^{2} \sim 7.5 \times 10^{-5} \text{ eV}^{2}$ $\Delta m_{32}^{2} \sim 2.5 \times 10^{-3} \text{ eV}^{2}$ $\Delta m_{32}^{2} \sim 2.5 \times 10^{-3} \text{ eV}^{2}$ $\Delta m_{11}^{2} = m_{11}^{2} - m_{12}^{2}$ EPS-HEP July 10-17, 2019

Dr Laura Kormos, Lancaster University

Mixing of three neutrinos

Oscillations at T2K

Oscillations at T2K

- Tests CPT symmetry
- LO^{*} dependence on $\sin^2 2\theta_{23}$
 - hard to distinguish θ_{23} >45° from θ_{23} <45°
- LO dependence on $|\Delta m^2_{32}|$

doesn't depend on sign of mass splitting

(* Leading Order)

EPS-HEP July 10-17, 2019

- Tests CP symmetry
- LO dependence on $\sin^2 2\theta_{13}$, $\sin^2 \theta_{23}$

• can separate θ_{23} >45° from θ_{23} <45°

- Sub-leading dependence on sin(δ_{CP})
 can detect CP violation (~27% effect)
- Sub-leading dependence on $\pm \Delta m^2_{_{32}}$
 - ~10% matter effect

The T2K beam

- Primarily v_{μ} beam from $\pi^+ \rightarrow \mu^+ + v_{\mu}$ (forward horn current, FHC, or neutrino mode)
- Reverse polarity for \overline{v}_{μ} beam:

$$\pi \rightarrow \mu + \bar{\nu}_{\mu}$$

(reverse horn current, RHC, or antineutrinomode)

EPS-HEP July 10-17, 2019

23 Jan. 2010 – 31 May 2018 POT total: 3.16 x 10²¹ ν -mode 1.51 x 10²¹ (47.83%) $\bar{\nu}$ -mode 1.65 x 10²¹ (52.17%)

Near detectors

INGRID

- Identical modules in cross
- Iron and plastic scintillator
- tracking calorimeter
- Monitors v, \overline{v} beam direction and stability

EPS-HEP July 10-17, 2019

- Off-axis (2.5°) detector
- 0.2 T magnet
- Trackers, calorimeters, muon range detectors
 - Water, carbon, lead, targets.
 - Beam v_e, flux, cross sections, exotics

Dr Laura Kormos, Lancaster University

TZR Far detector: Super-Kamiokande

- 50 kton Water-Cherenkov detector
- 2.5° off axis (same as ND280)
- Excellent e/μ separation, π^0 rejection
- Select 1-ring, CCQE-enriched sample
- Select CC1 π^+ sample (v_e appearance)
- v kinematics derived from lepton

* Charged-current quasi-elastic

EPS-HEP July 10-17, 2019

Dr Laura Kormos, Lancaster University

- Measure N events
- Compare events observed at near and far detectors
- Extract oscillation probability

•
$$N_{ND} \sim \Phi_{ND} \cdot \sigma_{ND} \cdot \epsilon_{ND}$$

Observable Flux Cross section Detector response

•
$$N_{FD} \sim \Phi_{FD} \cdot \sigma_{FD}$$
 • $\epsilon_{FD} \cdot P_{Osc}$

EPS-HEP July 10-17, 2019

EXAMPLE Flux prediction and uncertainties

- Flux simulation (FLUKA/GEANT3/ GCALOR)
- Tuned using external data (NA61/SHINE hadron production measurements)
- Intrinsic v_e component ~0.5% at flux peak

ND280: Neutrino Mode, v_{μ}

EPS-HEP July 10-17, 2019

Dr Laura Kormos, Lancaster University

Lancaster University

- NEUT generator tuned to external data from MiniBooNE, MINERvA, bubble chambers, etc
- Examples:
 - CCQE:
 - Relativistic Fermi Gas (RFG)
 - Random Phase Approximation (RPA)
 - CC-RES:
 - pion reinteractions inside the nucleus

EPS-HEP July 10-17, 2019

Lancaster Star University

TZR ND280 data fitting and constraints

- Showing only 1 (CC0π) of 14 ND280 data samples: 6 samples in v-mode and 8 in v-mode
- Fit tunes ~780 parameters (showing only FSI cross-section parameters)

Lancaster 🏁 University 🏴

Joint analysis with v_{μ} , \overline{v}_{μ} , v_{e} and \overline{v}_{e}

5

15

			PREDICTED				
		SAMPLE	$\delta_{0} = -\pi/2$	$\delta_0 = 0$	$\delta_0 = +\pi/2$	$\delta_{0} = \pi$	OBSERVEL
	Analysis frameworks	ν -mode μ CCQE	272.34	271.97	272.30	272.74	24
•	Frequentist with likelihood fit to • E_{rec} / θ_{lep} for v_e / \overline{v}_e • E for v / \overline{v}	$\overline{\nu}$ -mode μ CCQE	139.47	139.12	139.47	139.82	14
		v-mode e CCQE	74.46	62.26	50.59	62.78	7
		ν-mode e CC1π	7.02	6.10	4.94	5.87	1

 \overline{v} -mode e CCQE

- Frequentist with likelihood fit to
 - p_{lep}/θ_{lep} for v_e/v_e
 - E_{rec} for v_{μ}/v_{μ}
- Bayesian with Markov Chain MC
 - E_{rec} for all samples
 - simultaneous fit with near detector

Events observed at SK vs ND data-tuned predictions under oscillation hypothesis using NH, 2018 PDG θ_{13} , $\sin^2\theta_{23}$ = 0.528.

21.75

19.33

19.57

17.15

15 events observed in $CC1\pi^+$ sample, with prediction of 7.02 max. p-value for fluctuation this significant in any one of the five samples is 12%.

v_{μ} and \overline{v}_{μ} disappearance: Precision era of θ_{23} and Δm^{2}_{atm}

\bar{v}_{e} appearance search

- Compare consistency with PMNS \overline{v}_{e} appearance (β =1) and no \overline{v}_{e} appearance (β =0)
 - if β=0 expect 9.4 events
 - if β=1 expect 17.1 events
 - Data = 15 events
- Use rate+shape analyses:

β	Hypothesis	P-value
β=0	NO appearance	p=0.024
β=1	PMNS appearance	p=0.261

• $\beta=0$ excluded at $2\sigma \implies NO$ appearance is excluded at 2σ .

v_e and \overline{v}_e sample: δ_{CP}

v_e appearance: θ_{13}

T2K-II: upgrade beam and detectors

- 1st stage of J-PARC main ring power supply upgrade approved
 - *Near future*: Aiming for 750 kW beam power (currently 485 kW)
- T2K-II extends T2K run to 20 x 10^{21} POT (stops ~ 2027 when HK starts) ۲ Benjamin Quilain
- Long term: beamline upgrade to reach 1.3 MW •

Talk by

after coffee

ND280 upgrade

See slides from previous talk.

ND280 upgrade configuration

- Replace (most of) P0D with scintillator detector + 2 high-angle TPCs and TOF.
 - improve acceptance for largeangle tracks.
- Keep current "tracker" (2 FGDs + 3 TPCs) & upstream part of P0D, as well as ECal, magnet & SMRD.
 - keeps continuity and forward acceptance.

 T2K-II goal: reduce detector systematics to ~4%

- improve acceptance, timing, efficiency for short tracks.
- WAGASCI/BabyMIND collaboration has become part of T2K.
 - (3D scintillator detector) Talk by Etam Noah Saturday
- CERN support, test beam was last summer.
- **TDR:** T2K Collaboration. T2K ND280 Upgrade -Technical Design Report. arXiv. 2019 Jan 11.
- Aim to install upgraded ND280 in 2021.

EPS-HEP July 10-17, 2019

Dr Laura Kormos, Lancaster University

SK upgrade

- Additional SK data samples under study
 - CC1 π^+ , NC π^0 in both \overline{v} and \overline{v} -mode
- SK-Gd project
 - enhance neutron detection
 - improve low-energy \overline{v}_{e} detection
 - may provide wrong-sign background constraint in v_e -mode data.
- Repairs to SK tank finished.
- Load $Gd_2(SO_4)_3$ in stages up to 0.2%.

Summary

- T2K has a rich and varied neutrino physics programme
- Precise measurement of $\theta_{_{23}}$, $\Delta m_{_{32}}^2$
- First suggestions of CPV in the lepton sector
- Hints of direct $\overline{v}_{u} \rightarrow \overline{v}_{e}$ observation
- First (mild) indications of neutrino mass hierarchy
- Competitive (sometimes the only) neutrino cross-section measurements (talk by Georgios Christodoulou on Saturday)
- Constraints on neutrino interaction models, nuclear models
- Limits on $\nu_{\rm s}$, Lorentz Violation, etc are in progress or published (not covered)
- T2K-II: beam, ND280, SK upgrades until HK! (previous talk)

EPS-HEP July 10-17, 2019

Off-axis technique

- Enhanced oscillation beam energy tuned to oscillation max
- Enhanced CCQE fraction

 v_l

- Less intrinsic v_e contamination
- Less Neutral Current background

2

 E_{ν} (GeV)

EPS-HEP July 10-17, 2019

Dr Laura Kormos, Lancaster University

EPS-HEP July 10-17, 2019

Flux uncertainties

- Beamline uncertainties
 - Proton beam parameters
 - Focusing horns
 - Component alignment

- Hadron production uncertainties
 - NA61/SHINE uncerts
 - Re-interactions, Secondary production

EPS-HEP July 10-17, 2019

Dr Laura Kormos, Lancaster University

Lancaster University

EPS-HEP July 10-17, 2019

Dr Laura Kormos, Lancaster University

Flux predictions at SK

from Mark Hartz, KEK Aug 2017

FITQUN RECONSTRUCTION ALGORITHM

- Previous T2K analyses have used the event reconstruction algorithm APFit
- For this result, event reconstruction at Super-K updated to use the fiTQun algorithm
- ► fiTQun uses a charge and time likelihood for a given ring(s) hypotheses
 - Maximizes likelihood for each event
 - Complete charge and time information in the likelihood leads to improved event reconstruction
- fiTQun previously used in T2K analyses for the rejection of π⁰ from electron neutrino candidates

from Mark Hartz, KEK Aug 2017

THE FIVE SAMPLES Using the reconstructed fiTQun quantities, five samples are selected: $\mathbf{v}_{\mu}(\bar{\mathbf{v}}_{\mu}) + N \rightarrow \mu^{-}(\mu^{+}) + X$ Neutrino Mode (forward horn current FHC): (CCQE) 1 Muon-like Ring, ≤ 1 decay electron (CCQE) 1 Electron-like Ring, 0 decay electrons $(CC1\pi)$ 1 Electron-like Ring, 1 decay electron $\mathbf{v}_{e}(\bar{\mathbf{v}}_{e}) + N \rightarrow e^{-}(e^{+}) + X$ $v_e + N \rightarrow e^+ \pi^+ + X$ Antineutrino Mode (reverse horn current RHC): (CCQE) 1 Muon-like Ring, ≤ 1 decay electron (CCQE) 1 Electron-like Ring, 0 decay electrons = detected particles No antineutrino mode $CC1\pi$ sample due to $\pi^$ absorption