New results from
the DANSS experiment

Mikhail Danilov, LPI (Moscow) for the DANSS Collaboration
There are several $\sim 3\sigma$ indications of 4th neutrino

LSND, MiniBoone: $\bar{\nu}_e$ appearance
SAGE and GALEX ν_e deficit
Reactor $\bar{\nu}_e$ deficit

Indication of a sterile neutrino
$\Delta m^2 \sim 1 \text{ eV}^2$
$\sin^2 2\theta_{14} \sim 0.1$
\Rightarrow Short range neutrino oscillations

Inverse Beta Decay (IBD) process

Reactor models do not describe well neutrino spectrum
Measurements at one distance are not sufficient!
New (2018) indications of sterile neutrinos

NEUTRINO-4: $\Delta m^2 \sim 7 \text{eV}^2$ and $\sin^2 2\theta \sim 0.35$

JETP Lett. 109 (2019) no.4, 213

MiniBooNE ν_e excess of 4.8σ (6σ with LSND)

Phys.Rev.Lett. 121 (2018) no.22, 221801
DANSS Detector design (ITEP-JINR Collaboration)

- **Polystyrene based scintillator**
 - Y11 1.2mm Ø WLS fibers
 - PMT R7600U-300
 - 1 layer = 5 strips = 20 cm

- **X-Module**

- **Y-Module**
 - Grooves with fibers
 - Gd containing coating 1.6 mg/cm², 0.35%wt

- **SiPM MPPC S12825-050C**

- **SiPMs**
 - 100 fibers

- **10 layers = 20 cm**

- **Two-coordinate detector with fine segmentation – spatial information**

- **Light collection with 3 WLS fibers**

- **Central fiber read out with individual SiPM**

- **Side fibers from 50 strips make a bunch of 100 on a PMT cathode = Module**

- **2500 scintillator strips with Gd containing coating for neutron capture**

- **Multilayer closed passive shielding:** electrolytic copper frame ~5 cm, borated polyethylene 8 cm, lead 5 cm, borated polyethylene 8 cm

- **2-layer active μ-veto on 5 sides**
DANSS is installed on a movable platform **under 3GW WWER-1000 reactor** (Core: $h=3.7$ m, $\varnothing=3.1$ m) at Kalinin NPP.

~50 mwe shielding => μ flux reduction ~6!

No cosmic neutrons!

Detector distance from reactor core 10.7–12.7 m (center to center)

Trigger: $\Sigma E(PMT)>0.5-0.7$ MeV => Read 2600 wave forms (125 MHz), look for correlated pairs offline.

Fuel fission fractions at beginning and end of campaign

<table>
<thead>
<tr>
<th></th>
<th>Beginning</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>235U</td>
<td>63.7%</td>
<td>44.7%</td>
</tr>
<tr>
<td>239Pu</td>
<td>26.6%</td>
<td>38.9%</td>
</tr>
<tr>
<td>238U</td>
<td>6.8%</td>
<td>7.5%</td>
</tr>
<tr>
<td>241Pu</td>
<td>2.8%</td>
<td>8.5%</td>
</tr>
</tbody>
</table>
- Use of SiPM and PMT signal shapes for T_0 and charge determination
- Signal waveform simulation in MC; Better correction on Signal-PMT(SiPM) L
- Increased frequency of calibrations of 2600Ch (Gain - 15min, MIP - 2 days)
- Requirement for PMT coincidence for all SiPM signals to suppress noise
- Improved treatment of Birks effect and Cherenkov radiation in MC
- A bug in pattern numbering was corrected \rightarrow tiny shifts in excluded regions
- Requirement of annihilation photons for e+ clusters with 1 strip to reduce accidental background at low e+ energies as well as neutron background
- Comparison with 12B spectrum added for MC tests and energy scale fixation
- Two lowest detector layers added to the VETO system
- Four times finer grid of points on the $(\Delta M^2, \sin^2(2\theta))$ plane
- Increase of statistics from 966 thousand to 2.1 million IBD events
Results of improvements

- Accidental energy in event is reduced from 100 keV to 5 keV
- Accidental background is reduced from 71% to 29% (up position)
- Cosmic background is reduced from 2.8% to 1.9%

- Energy resolution for calibration sources is still worse than in MC → additional smearing of 17%/√E is added to MC (as in published results)

- Energy scale is determined using mainly 12B signals since they are similar to e^+ signals (we measure Ee^+ without annihilation gammas!)

We still assume +/-2% systematic uncertainty in the energy scale.

- Sensitivity of experiment is improved by a factor of ~ 1.4
Accidental coincidence background

- Fake e+ or neutron in IBD events by uncorrelated triggers → accidental background
- Background events from data: search for a positron candidate where it can not be present – 50 µs intervals far away from neutron candidate (5, 10, 15 etc millisecond)
- Enlarge statistics for accidentals by searches in numerous non-overlapping intervals
- Cuts for the accidental coincidence exactly the same as for physics events
- Accidental rate is ~29% of IBD rate (up detector position)
- Mathematically strict procedure, but it increases statistical errors
- Selection of cuts to reduce accidental contribution => smaller statistical errors

Time between positron and neutron: 2 – 50 µs

Before subtraction

After subtraction

Accidental Background

n-e+ distance

Events

IBD candidates and accidental background
Accidental background
IBD candidates
MC IBD Events
Cut at 2 µs

Events

IBD candidates and accidental background
Accidental background
IBD candidates
MC IBD Events
Cut at 55 cm

Distance, cm

Distance, cm
Residual background subtraction

- Fast neutron tails: linearly extrapolate from high energy region and subtract separately from positron and visible (i.e. rejected by VETO) cosmic spectra
- Subtract fraction of visible cosmics based on VETO inefficiency
- Amount of visible (rejected by VETO) cosmics 30.9% of neutrino signal (up position)
- VETO inefficiency - 6.2% from ‘reactor OFF’ spectra.
- Not vetoed cosmic background fraction is ~1.9% of neutrino signal, subtracted
- Final anti-neutrino spectrum (Ee\(^+\) + 1.8 MeV) has No background!
Calibration

Cosmic muons

Response is linear

MC E shifted by 3%

MC E shifted by 2%

MC E shifted by 1%

MC E shifted by -0.5%

E scale is based on 12B signal which is similar to e^+ signal (we measure E_{e^+}, not E_{prompt})

Systematic error on E scale of +/-2% added to take into account shifts in source responses
• 3 detector positions
• Pure positron kinetic energy (annihilation photons not included)
• > 4000 neutrino events/day in detector fiducial volume of 78% (‘Up’ position closest to the reactor)
Rough agreement with MC.
(Theoretical neutrino spectrum was taken from Huber and Mueller)
Large sensitivity to energy scale
More work on calibration is needed before quantitative comparison
Indication of a small bump (normalization in 1.5–3 MeV)
However, shape dependence on energy scale is strong
No conclusion on the bump existence at the moment
More studies on energy scale are required
Ratio of positron spectra at the 4 last months of campaign and 2-5 months of the next campaign

Statistical errors only

Fission fractions [%]

<table>
<thead>
<tr>
<th></th>
<th>235U</th>
<th>238U</th>
<th>239Pu</th>
<th>241Pu</th>
</tr>
</thead>
<tbody>
<tr>
<td>End</td>
<td>45.8</td>
<td>7.7</td>
<td>38.3</td>
<td>7.9</td>
</tr>
<tr>
<td>Start</td>
<td>61.7</td>
<td>7.1</td>
<td>28.0</td>
<td>3.1</td>
</tr>
</tbody>
</table>

Not all data and old analysis
More work is needed for absolute efficiency calibration of new data (canceled in oscillation analysis)

Clear evidence for spectrum evolution
Spectrum evolution is consistent with MC
Comparison of reactor power and DANSS rate

- Points at different positions equalized by $\frac{1}{r^2}$
- Normalization by 12 points in November-December 2016
- Cosmics and adjacent reactor fluxes (0.6%) subtracted
- Spectrum dependence on fuel composition is included
- Reactor power is measured with v flux with 1.5% accuracy in 2 days during more than a year

Not all data and old analysis
More work is needed for absolute efficiency calibration of new data (canceled in oscillation analysis)
For a grid of points \((\Delta M^2, \sin^2(2\theta))\) e\(^+\) spectrum is calculated for Up and Down positions taking into account reactor core size and detector energy response.

The energy response (including tails) was obtained from cosmic muon calibration and GEANT-4 MC simulation analyzed identically to data analysis.

Reactor burning profile was provided by NPP.

Ratio of Down/Up spectra was calculated and compared with experiment (independent on \(\nu\) spectrum, detector efficiency, and many other problems!)

Systematic errors in energy resolution, energy scale, level of cosmic background were treated as nuisance parameters.

For each \(\Delta M^2\) and \(\sin^2(2\theta)\), \(\chi^2\) for 3\(\nu\) and 4\(\nu\) hypotheses were then calculated by minimization over nuisance parameters.

Confidence level for considered point was calculated using obtained \(\Delta \chi^2\) with Gaussian CLs method which is more conservative than usual CI method.
- Obtained ratio of e+ spectra at 2 L for 2016-2017 data was not too smooth but still consistent with constant (p value = 0.05).
- ΔX^2 between best 4ν and 3ν hypotheses was 12.5 without systematic errors.
- There were several other points with small X^2 for 4ν hypothesis.
- This created a lot of excitement, although we clearly stated that significance of this difference would be calculated after collection of additional data.
- For new data the largest ΔX^2 between 4ν and 3ν hypotheses is only 2.3 with systematic errors which include reduction of fit range to 1.5-6 MeV (such reduction of the fit range was used in published analysis as systematic).

Old data; fits without systematics

$\Delta M^2=1.33$ eV2, $\sin^2(2\theta)=0.056$ $\Delta X^2=12.5$

New data; fit with systematics

$\Delta M^2=0.35$ eV2, $\sin^2(2\theta)=0.11$ $\Delta X^2=2.3$
- The best 4ν point ($\Delta M^2=0.35\text{eV}^2$, $\sin^2(2\theta)=0.15$, $\Delta \chi^2 =7.8$) has CL of 1.8σ.
- Best point in old data ($\Delta M^2=1.33\text{eV}^2$) is also shown.
Results

Exclusion region was calculated using Gaussian CLs method
(X.Qian et al. NIMA, 827, 63 (2016))
using 1.5-6MeV e+ energy range only (to be conservative)
CLs method is also more conservative than usual Confidence Interval method

CLs is calculated with variations in:
- Energy resolution +/-10%
- Energy scale +/-2%
- Level of cosmic background +/-25%
- Level of flat background +/-30%
Systematics influence is small

New data allowed to extend the published DANSS excluded region
A large fraction of allowed parameter space is excluded by DANSS results using only ratio of e+ spectrum at different L (independent on ν spectrum, detector efficiency, ...)

-DANSS continues to collect more data
-Detector calibration and systematics studies will be continued
With improved analysis DANSS records about 4 thousand antineutrino events per day with cosmic background ~1.9%.

We doubled data set. New data have no sign of oscillations.

During reactor shutdown DANSS counting rate is consistent with cosmic background after subtraction of 0.6% flux from adjacent reactors.

Antineutrino spectrum and counting rate dependence on fuel composition is clearly observed.

Reactor power was measured using anti-ν rate with statistical error of ~1.5% in two days during > 1 year of operation.

Preliminary DANSS analysis based on 2 million IBD events excludes a large and the most interesting fraction of available parameter space for sterile neutrino using only ratio of e+ spectra at two distances (with no dependence on ν spectrum and detector efficiency!)

We plan:
To upgrade detector
To improve MC for perfect description of detector response
To refine detector calibration and energy scale determination
To compare e+ spectrum with theory

Thank you!
Backup slides
Data acquisition system

- Preamplifiers PA in groups of 15 and SiPM power supplies HVDAC for each group inside shielding, current and temperature sensing
- Total 46 Waveform Digitisers WFD in 4 VME crates on the platform
- WFD: 64 channels, 125 MHz, 12 bit dynamic range, signal sum and trigger generation and distribution (no additional hardware)
- 2 dedicated WFDs for PMTs and μ-veto for trigger production
- Each channel low threshold selftrigger on SiPM noise for gain calibration
- Exceptionally low analog noise ~1/12 p.e.
Event building and muon cuts

Building Pairs
- Positron candidate: 1-20 MeV in continuous ionization cluster
- Neutron candidate: 3.5-15 MeV total energy (PMT+SiPM), SiPM multiplicity >3
- Search positron 50 µs backwards from neutron

Muon Cuts
- VETO ‘OR’:
 - 2 hits in veto counters
 - veto energy >4 MeV
 - energy in strips >20 MeV
- Two distinct components of muon induced paired events with different spectra:
 - ‘Instantaneous’ – fast neutron
 - ‘Delayed’ – two neutrons from excited nucleus
- ‘Muon’ cut : NO VETO 60 µs before positron
- ‘Isolation’ cut : NO any triggers 45 µs before and 80 µs after positron (except neutron)
- ‘Showering’ cut : NO VETO with energy in strips >300 MeV 200 µs before positron
$
\bar{\nu}$ counting rate dependence on distance from reactor core

\begin{itemize}
 \item 3 detector positions
 \item Detector divided vertically into 3 sections with individual acceptance normalization
\end{itemize}

Rough agreement with $1/R^2$ dependence
$^{248}\text{Cm}:\quad \text{MC E shifted by 1\%}$

$^{12}\text{B}:\quad \text{MC E shifted by -0.5\%}$

$\chi^2=81.1\quad \text{n.d.f.}=23$

$\chi^2=58.5\quad \text{n.d.f.}=23$

$\chi^2=147.5\quad \text{n.d.f.}=23$

$\chi^2=29.2\quad \text{n.d.f.}=32$

$\chi^2=26.3\quad \text{n.d.f.}=32$

$\chi^2=36.1\quad \text{n.d.f.}=32$

$\text{Escale}=1.005$

$\text{Escale}=1.010$

$\text{Escale}=1.015$

$\text{Escale}=1.000$

$\text{Escale}=0.995$

$\text{Escale}=0.990$
Comparison of new data and the best fit in published data
(fit without systematics)
Reconstructed energy for 4.0625 MeV positron

Monte Carlo + standard analysis

$\sigma/E = 0.17$
Reactor core burning profile averaged over campaign