Iowards Unitarity?

(how far?)

EPS-HEP Conference @ Ghent (Belgium) July 2019

Anatael Cabrera

CNRS/IN2P3 LAL@Orsay LNCA@Chooz

~50 years of neutrino oscillations...

huge experimental effort→<u>well established</u> [discovery ⇔ Nobel 2015]

what is/are the next goal?

status on neutrino oscillation knowledge...

Standard Model(3 families)

 $\mathbb{PMNS}_{3\times 3}(\theta_{12},\theta_{23},\theta_{13})$

 $\pm \Delta m^2 \& \pm \delta m^2$

no conclusive sign of any extension so far!!

(inconsistencies vs uncertainties)

must measure all parameters→characterise & test (i.e. over-constrain) Standard Model

		today		≥ 2030			
	best knowledge		NuFIT4.0	foreseen	dominant	technique	
θ_{12}	3.0 %	sno	2.3 %	≲ .0%	JUNO	reactor	
θ23	5.0 %	NOvA	2.0 %	≲1.0%	DUNE⊕HK	beam (octant)	
θιз	1.8 %	DYB	1.5 %	1.5 %	DC⊕ <u>DYB</u> ⊕RENO	reactor	
+δm²	2.5 %	KamLAND	2.3 %	≲1.0%	JUNO	reactor	
±∆m²	3.0 %	T2K & DYB	1.3 %	≲1.0%	JUNO⊕DUNE⊕HK	reactor⊕beam	
sign(∆m²)	unknown	(SK et al)	NO @ ~3 σ	@5 σ	JUNO⊕DUNE⊕HK	reactor⊕beam	
CPV	unknown	(T2K et al)	3/2π@~2 σ	@5σ?	DUNE⊕HK⊕ALL	beam driven	
			(Nov 2018)			(reactor-beam)	

essentially JUNO \oplus DUNE \oplus HK will lead most of the field (goal CPV) \rightarrow except θ_{13} !

NOTE: ORCA \oplus PINGU \oplus IceCube complementary (Mass Ordering & Δ m² measurements)

3

the "super" experiments era...

⁷ summary on today's θ | 3 knowledge/experiments...

reactor-θI3 experiments [DC⊕DYB⊕RENO]

statistics: ~10⁵ (far) [<10⁶]
systematics: ~0.1% (each)
energy control: <1% precision

	<2010	today [2010-2020]			cancellation	
	total	total	rate-only	shape-only	methodology	
statistics	few %	~0.1%			~100/day @ 1.5km	
flux	~2.2%	~0.1%	~0.1%	<0.1%	near-to-far monitor (ideal: iso-flux)	
BG	few %	~0.1%	~0.1%	<0.1%	overburden→few/day	
detection	2.0 %	~0.1%	~0.1%		identical detectors	
energy	few %	~0.5%		~0.5%	identical detectors	

"naively extrapolating" from reactor-θ|3 experiments... •statistics: ~|0×? (far) [>|0⁶] •systematics: ~0.0|%??!! (each) possible at all?

θ 13 knowledge elsewhere?

a sub-percent $\theta_{13} \Rightarrow$ help DUNE \oplus HK \oplus JUNO?

8

JUNO

•θ|3 measurement: **shape-only**

•complementary: reactor-θ₁₃ is <u>rate-driven</u>

•JUNO much less precise (5x larger)

• JUNO benefit from a more precise θ I 3? [robustness against "fast spectral distorsion"]

reactor \Rightarrow "super" systematics...

review reactor θ | 3 sensitivity evolution...

reactor sensitive has potential to go well beyond today [DC+DYB+RENO]

10

•statistics: ≥ 10⁷ (far) [≥20x today]
 •detection systematics (~today: ~0.1%)
 •energy control (<1% precision)
 ⇒ flux & BG systematics → new techniques!!

improving possible...

rate+shape→rate+shape (today) (new)

subtle by powerful difference! (rate systematics→negligible)

From Double Chooz to Triple Chooz — Neutrino Physics at the Chooz Reactor Complex

P. HUBER^a, J. KOPP^b, M. LINDNER^c, M. ROLINEC^d, W. WINTER^e

arXiv:hep-ph/0601266v1 31 Jan 2006

θ | 3 systematics: need for new techniques...

larger statistics→ shape-driven info (systematics) matters is this good enough? no!!

•detection: believed impossible to improve [irreducible]
 •flux: BIG trouble→must fully cancel
 •BG: must supress > 10x→more overburden?

	<2010	today	>2025	cancellation methodology
	total	total	rate-only shape-only	
statistics	few %	~0.1%	<0.01% (large)	[25,250]k IBD/day
detection	2.0 %	~0.1%	~ 0. % ✓DC & ✓DYB	today's knowledge
energy	few %	~0.5%	just about possible ~0.5%	today's knowledge
flux	~2.2%	~0.1%	<0.01% (new)	full cancellation
BG	few %	~0.1%	<0.01% (new)	BG suppress >I0x

new techniques needed to yield $\delta(flux) \rightarrow 0 \& \delta(BG) \rightarrow 0!!$

flux cancellation(!) & BG elimination (!!!)

"super" requirements... possible?

13

flux handled by the power of geometry...

today's knowledge converges: BIG ISSUE!

14

monitor rate+shape cancels (perfect?)

•conventional ND: not good enough!

 \rightarrow degeneracy flux & θ 13 (also far & small)

→slight offset to iso-flux⇒ unacceptable

•flux decomposition (L≈40m): perfect!

- →very near detector (VND) per reactor
- →<u>huge statistics</u>:
 - Iton @ 20m: 8.2k IBD/day [FD: ≤2.2k IBD/day]
- \rightarrow <u>no civil construction</u> [\rightarrow reactor space?]

how to reduce BG with no more overburden?

another lesson: avoid civil construction...

LiquidO: novel detection technology (born in reactor)

LiquidO event-wise imaging...

opaque scintillator→stochastic light confinement (self-segmentation) backup slide

powerful PID...

vertex resolution \approx order mm

cosmogenic (⁹Li & fast-neutrons) **accidentals** (β-, γ and α)

rejection ≥ 100x

[time⊕space coincidence & PID(e+)]

backup slide

LiquidO mean many things...

"background-less" IBD detection?

Detector Seminar

LiquidO: Novel Opaque Neutrino Detection Technology

by Anatael Cabrera Serra (IN2P3/CNRS)

Friday 7 Jun 2019, 11:00 → 12:00 Europe/Zurich

♀ 40/S2-A01 - Salle Anderson (CERN)

https://indico.cern.ch/event/823865/

first publication days away...

new sensitivity with LiquidO...

²¹ sub-percent θ | 3 seems possible (while not easy)...

LiquidO sensitivity: flux constraint via VND's ⊕ energy control (model DC or DYB) ⊕ negligible BG

NOTE: calculations on DYB site (equivalent performance)

sub-percent θ I 3 precision possible...

full range implications under study (very soon)

European "super" site ready?

LNCA laboratory...

Chooz-A Lab <L>≈1050m ~100m overburden

Chooz Reactors Power: $\sim 8.4 \text{GW}^{\text{thermal}} \Rightarrow \sim |0^2|_{V/s}$

(2x N4 reactors)

Chooz-B Lab

<L>≈410m

~30m overburden

new site here (built)

²⁵ the Chooz-A underground system (former reactor)...

Cavern A: 20,000m³ [past: reactor Chooz-A]

Cavern B: 30,000m³ [past: fuel pool]

 $\Rightarrow \leq 10$ kton detector \oplus water veto pool (which?)

Overburden: ~100m (known BGs!)

Civil Construction?

refurbishment (remove structure)heavy cranes ready

Available? If so, around ≥2024

"super" synergy with our colleagues in EDF

a Super Chooz project? (too early to say but promising)

26

leading neutrino physics in Europe is important!

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

much physics beyond $\theta_{13...}$

full menu (under construction)

- sub-percent precision on θ [3 [sin2(2 θ | 3)] & Δm^2 (reactor) [not shown yet] [aid DUNE \oplus HK to improve CP-Violation & JUNO to measure $\pm \Delta m^2$ (vacuum)]
- burst & remnants supernovae V_e , anti- V_e and V_x measurement [backup appetiser] [10 kton & high efficiency]
- •multi-channel proton decay [backup appetiser] [10 kton & high efficiency]
- high precision reactor rate+shape spectra (BI and B2) with VND's [statistics & complementary to JUNO's TAO]
 ⇒demonstration of reactor monitor technology (high S/BG ~ Iton detectors) [industry?]
 ⇒reactor spectral composition analysis upon switching ON/OFF (better reactor predictions?)

even more challenging thoughts...

- •measure solar neutrinos? [backup appetiser] [unprecedented 10 kton precision with CC interactions]
- •measure θ_w via elastic scattering? (interference CC & NC) [β - BG is extreme challenge even with LiquidO but huge signal rate and ON/OFF helps]
- [bad news] **geo-neutrinos unlikely** \Rightarrow huge reactor-IBD BG...

note: PMNS Unitarity test ("top-electron-row") → solar & other constraints: **a full programme**?

what to remember...

ready to address PMNS structure (head-on) to $\leq 1\%$? [along with CPV, our next goal? do we have the global knowledge?]

all needed to make the most of our "super-project" era?

[redundancy & complementarity \rightarrow each step cost up to billions and/or decades]

a hypothetical "Super Chooz" add/complete to the overall picture? [aid all other projects & address new physics→feasible with LiquidO?]

can LiquidO deliver the expected detector performance?

[breakthrough potential → must demonstrate immediately]

[EPS] Europe OK for much (or most) neutrino physics elsewhere?

[much of our physics "brewed/conceived" in Europe but then goes elsewhere]

the best "super" is timely/right decisions...

feedback / work with

phenomenologists

full programme

envisaged

questions, please?

full results soon!

[paper in preparation]

anatael@in2p3.fr

work led by (alphabetically)...

- Thiago Bezerra (SUBATECH, France)
- Pedro Ochoa (UCI, USA)
- •<u>Beda Roskovec</u> (UCI, USA)
- •AC (LAL, France)
- and
- •the LiquidO proto-collaboration

merci... ありがとう... danke... 고맙습니다... obrigado... Спасибо... grazie... 谢谢... hvala... gracias... ...شکرا thanks...