## **EPS-HEP2019**



Contribution ID: 659

Type: Poster

## **Current status of JUNO Top Tracker**

Monday, 15 July 2019 18:30 (1h 30m)

The JUNO experiment is a multi-purpose anti-neutrino oscillation experiment with the main objective of determining the neutrino mass ordering ( $\nu$ MO). The baselines to its two major reactors are both 53 km. JUNO's goal is to achieve  $3\sigma$  sensitivity of  $\nu$ MO with 6-year of data taking, so it is critical to obtain an unprecedented energy resolution, better than 3% at 1 MeV. The JUNO Central Detector (CD), a 20 kton liquid scintillator detector, will be built with high PMT photocathode coverage and good transparency for this purpose. Despite the 700m overburden, the atmospheric muon-induced background is still estimated to be non negligible compared to the expected signal for the  $\nu$ MO determination. A veto system was designed for muon detection to further suppress muon-induced background. Two subsystems are used for the muon veto strategy: the Top Tracker (TT) and the Water Cherenkov Detector (WCD). The TT is a 3-layer muon tracker covering about 60% of the surface above the WCD and will provide precise atmospheric muon tracking. These well reconstructed muons are essential in the JUNO veto strategy for rejecting cosmogenic isotopes (<sup>9</sup>Li and <sup>8</sup>He). Combining the muon information from the TT and the WCD, our veto strategy will remove most of the atmospheric muon-induced background.

This poster will discuss the current status and the expected performance of the JUNO Top Tracker.

**Primary authors:** Mr HUANG, Qinhua (IPHC/LLR IN2P3); Dr ATHAYDE MARCONDES DE ANDRE, Joao Pedro (IPHC)

**Presenter:** Mr HUANG, Qinhua (IPHC/LLR IN2P3)

Session Classification: Wine & Cheese Poster Session

Track Classification: Neutrino Physics