

The High Energy cosmic-Radiation Detection facility (HERD): a probe for high-energy cosmic rays' physics and multimessenger astronomy

F.GARGANO ON BEHALF OF THE **HERD** COLLABORATION

COLLABORATION

CHINA

- Institute of High Energy Physics, CAS, Beijing
- Xi'an Institute of Optical and Precision Mechanics, China
- Purple Mountain Observatory, CAS, Nanjing
- University of Science and Technology of China, Hefei

ITALY

- INFN Bari and University of Bari
- INFN Firenze and University of Firenze
- INFN Perugia and University of Perugia
- INFN Pisa and University of Pisa
- INFN Lecce and University of Salento
- INFN Laboratori Nazionali del Gran Sasso and GSSI Gran Sasso Science Institute

SPAIN

- CIEMAT Madrid
- ICCUB Barcellona

SWITZERLAND

– University of Geneva

 \bigcirc VFRVIFW

The **High Energy cosmic-Radiation Detection** (HERD) facility is a China-led international space mission that will start operation around 2026.

The experiment is based on a **3D**, **homogeneous**, **isotropic and finely-segmented calorimeter** that fulfills the following requirements and goals

Main requirements			
	γ	е	p, nuclei
Energy Range	0.5 GeV 100 TeV	10 GeV 100 TeV	30 GeV 3 PeV
Energy resolution	1% @ 200 GeV	1% @ 200 GeV	20% @ 100 GeV -1 PeV
Effective Geometric Factor	>1 m ² sr @ 200 GeV	>3 m ² sr @ 200 GeV	>2 m ² sr @ 100 TeV

Main Scientific goals

Direct measurement of cosmic rays flux and composition up to the knee region

Gamma-ray monitoring and full sky survey

Indirect dark matter search (e^++e^- , γ ,...)

			COST A		
	HERD	DAMPE	CALET	AMS-02	Fermi LAT
e/γ Energy res.@100 GeV (%)	<1	<1.5	2	3	10
e/γ Angular res.@100 GeV (deg.)	< 0.1	<0.2	0.2	0.3	0.1
e/p discrimination	>10 ⁶	>10 ⁵	10 ⁵	10 ⁵ - 10 ⁶	10 ³
Calorimeter thickness (X ₀)	55	32	27	17	8.6
Geometrical accep. (m ² sr)	>3	0.3	0.12	0.09	1

Physics

Instrument

Electrons and Positrons (Pamela and AMS-02)

Positron excess respect to pure secondary production (PAMELA, AMS-02)

Two hypotheses Dark Matter (DM) annihilation Nearby Pulsar Wind Nebulae (PWN)

How to distinguish among them?

An important contribution to our understanding can be obtained by high energy (calorimetric) measurement of the e⁺+e⁻ flux

6

Electrons and Positrons (HERD)

Expected e⁺+e⁻ flux in 5 years

HERD will measure the flux up to several tens of TeV in order to detect: spectral cutoff at high energy local SNR sources of very high energy e⁻

... and additional information from anisotropy measurement!

Expected e⁺+e⁻ flux in 1 year with PWN or DM sources

In case of additional PWN or DM production, **HERD** will give important indications on the two hypothesis thanks to precise measurement of the different spectral shape

Electrons and Positrons (Fermi-LAT, DAMPE and CALET)

Recent calorimetric measurement of the e⁺+e⁻ flux (Fermi-LAT, CALET, DAMPE) lead to **very different results** and **no clear conclusion**

DAMPE data shows a cutoff at 1 TeV and a "sharp peak" at 1.4 TeV – NATURE 552 (2017) CALET data are consistent with a single power law without cutoff - PRL 120 (2018)

HERD could help in resolving the "conflict" between different measurements: improving the precision of the measurement extending the measurement to higher energy

Protons and Nuclei

Proton flux measured up to 100 TeV but with large uncertainties: spectral hardening at 200 GeV spectral softening > 10 TeV (DAMPE preliminary analysis)

Still no direct measurement of proton and helium knee He spectral hardening > 100 Gev/n (DAMPE preliminary analysis)

9

Protons and Nuclei (HERD)

p and He up to a few PeV nuclei up to a few hundreds of TeV/n

First direct measurement of p and He knees will provide a strong evidence for the knee structure as due to

107

10

Extension of the B/C ratio to high energy will provide further test for the propagation mechanisms of cosmic rays

Gamma ray sky-survey (HERD)

Sky survey 5σ sensitivity

Multi-messenger astronomy Possible synergy with other experiments designed for γ (CTA), ν (KM3, IceCube), GW (Ligo, Virgo)

- Thanks to its large acceptance and sensitivity, HERD will be able to:
 - improve Fermi-LAT measurements between 10 and 100 GeV
 - extend Fermi-LAT catalog to higher energy (between 0.1 and 100 TeV)
 - \blacktriangleright increase the chances to detect rare γ events
- Targets of Gamma-Ray Sky Survey:
 - ► search for dark matter signatures
 - study of galactic and extragalactic γ sources
 - study of galactic and extragalactic γ diffuse emission
 - detection of high energy γ Burst

Physics

Instrument

HERD on board CSS

CSS expected to be completed in 2022

Life time	> 10y
Orbit	Circular LEO
Altitude	340-450 km
Inclination	42°

HERD expected to be installed around 2026

Life time	> 10y
FOV	+/- 70°
Power	< 1.5 kW
Mass	< 4 t

CALO	Energy Reconstruction e/p Discrimination
STK	Trajectory Reconstruction Charge Identification
PSD	Charge Reconstruction γ Identification
TRD	Calibration of CALO response for TeV proton

HERD CALOrimeter (CALO)

Octagonal Prism made of about 7500 LYSO cubic crystals (80x80x80 cm³): each crystal has 3 cm side

Deep homogeneous calorimeter	Good energy resolution
Isotropic 3D geometry	Large geometric factor (top + lateral faces)
Shower imaging with 3D segmentation	Good e/p discrimination, identification of shower axis and of shower starting point

HERD CALO READOUT

Dynamic range of 10⁷ is needed to detect from a MIP (~30 MeV released in a single crystal) to a PeV proton (~20 TeV released in a single crystal)

WLS read-out

Each cube is read-out by 3 WLS fibers.

One of the fiber is used for triggering and the light signal is readout by a fast PMT

The light signal from the other two fibers is amplified by an Image Intensifier (two gains) and read-out by a IsCMOS camera

Protocative Proto

PIN-Diode read-out

Each cube is read-out by 2 PIN-Diode of different area (1:100 ratio)

Each PIN-Diode is readout by CASIS chip with two gains and trigger capability

Beam Test at CERN – SPS (2017) with a prototype of 250 crystals with WLS read-out

Energy resolution < 1.3% at 200 GeV/c (electrons)

HERD Silicon TracKer (STK)

4 Side STK

1 Top STK

6 Layers of XY SSD Baseline: W foils for γ conversion (FERMI-LAT, DAMPE) Alternative: LYSO crystal as active converter Active Area 133 cm x 133 cm

4 Lateral STK

3 Layers of XZ or YZ SSD Active Area 95 cm x 66.5 cm

SSD

Implantation Pitch= 121 μ m Readout Pitch = 242 μ m Expected resolution σ = 40 μ m

Alternative design: Flber Tracker instead of Silicon TracKer

HERD Tracker in Calorimeter (TIC)

W- converter

 γ Conversion in W foils in the STK

Direction reconstructions by e⁺e⁻ tracking in the Si-tacker planes

Si TRK catoria catoria acceptance TIC CALO

TIC

 γ Conversion in Lyso crystals in top layer of the CALO

Fine sampling of the e.m. shower with Si-tracker planes inside the CALO

TIC Pro	TIC Cons
 decrease the amount of mass used for passive material (W) reduce hadron fragmentation in passive material increase the geometric acceptance 	- worst PSF for low energy γ (< 10 GeV)

HERD Plastic Scintillator Detector (PSD)

PSD provide γ identification (VETO of charged particles) and nuclei identification (energy loss $\propto Z^2$) Back-scattering can greatly degrade the performances

Bar - option

- Long bars 160x3x1 cm³
- Each layer made by two staggered sub layer to increase hermeticity
- Read-out with 4 SiPM (two for each end)
- PRO
 - Less number of readout channel
- CONS
 - Higher Back-scattering problem

Tile - option

- Small square tile 10x10x1 cm³
- Two layer of tiles to increase nuclei identification power
- Each tile is readout by 4 SiPM (one for each side)
- PRO
 - Reduce back-scattering problem
- CONS
 - Higher number of readout channel

HERD Transition Radiation Detector (TRD)

The TRD, installed on a lateral face of the detector, is needed to calibrate the response of the calorimeter to high energy hadronic showers

Calibration procedure

Linearity for $10^3 < \gamma < 10^4$

Electron 0.5 GeV < E < 5 GeV

Proton: 1 TeV < E < 10 TeV

calibrate TRD response using [0.5 GeV, 5 GeV] electrons in space (and at beam test)

calibrate CALO response using [1 TeV, 10 TeV] protons from TRD (3 months data required)

The **High Energy cosmic-Radiation Detection** facility is a China-led international space mission that will start its operation around 2026 on board the future China's Space Station.

Thanks to its **novel design**, based on a 3D, homogeneous, isotropic and finelysegmented calorimeter, HERD is expected to accomplish **important and frontier goals** relative to DM search, CR observations and Gamma-Ray astronomy:

- extend the measurement of e⁺+e⁻ flux up to several tens of TeV
 - testing the hypothesis of the expected cutoff at high energy
 - distinguishing between DM or astrophysical origin of positron excess
- extend the measurement of p and He flux up to a few PeV
 - testing the theory of the knee structure as due to acceleration limit
- large acceptance, high sensitivity to γ up to several tens of TeV
 - searching for γ line associated to DM annihilation
 - accomplishing a γ sky survey up to very high energy

23

DAMPE preliminary

DAMPE Helium Preliminary Spectrum

DAMPE Protons Preliminary Spectrum

